TVM踩坑记录

2024-03-26 20:38
文章标签 记录 tvm

本文主要是介绍TVM踩坑记录,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

TVM踩坑记录

  • 安装
  • AirFace.onnx试验
      • 问题定位:
  • 自动优化

安装

参照官网。
安装完成后安装官网quick-start-py跑一跑简单例子

import numpy as np
from tvm import relay
import tvm
from tvm.contrib import graph_runtimebatch_size = 1
num_class = 1000
image_shape = (3, 224, 224)
data_shape = (batch_size,) + image_shape
out_shape = (batch_size, num_class)mod, params = relay.testing.resnet.get_workload(num_layers=18, batch_size=batch_size, image_shape=image_shape)print(mod.astext(show_meta_data=False))

结果失败

Traceback (most recent call last):File "./compile.py", line 84, in <module>from tvm import relayFile "/usr/local/lib/python3.6/dist-packages/tvm-0.6.dev0-py3.6-linux-x86_64.egg/tvm/relay/__init__.py", line 27, in <module>from . import expr_functorFile "/usr/local/lib/python3.6/dist-packages/tvm-0.6.dev0-py3.6-linux-x86_64.egg/tvm/relay/expr_functor.py", line 24, in <module>from .op import OpFile "/usr/local/lib/python3.6/dist-packages/tvm-0.6.dev0-py3.6-linux-x86_64.egg/tvm/relay/op/__init__.py", line 20, in <module>from .op import get, register, register_schedule, register_compute, register_gradient, \File "/usr/local/lib/python3.6/dist-packages/tvm-0.6.dev0-py3.6-linux-x86_64.egg/tvm/relay/op/op.py", line 19, in <module>import topiFile "/usr/local/lib/python3.6/dist-packages/topi-0.6.dev0-py3.6.egg/topi/__init__.py", line 43, in <module>from . import nnFile "/usr/local/lib/python3.6/dist-packages/topi-0.6.dev0-py3.6.egg/topi/nn/__init__.py", line 23, in <module>from .deformable_conv2d import *File "/usr/local/lib/python3.6/dist-packages/topi-0.6.dev0-py3.6.egg/topi/nn/deformable_conv2d.py", line 23, in <module>from ..cpp.image import bilinear_sample_nchw
ImportError: cannot import name 'bilinear_sample_nchw'

这个错误需要在环境变量中添加:

export LD_LIBRARY_PATH=/home/bokyliu/.local/lib/python3.6/site-packages/topi-0.6.dev0-py3.6.egg/topi

问题一个接一个

Connected to pydev debugger (build 182.4505.26)
Traceback (most recent call last):File "/home/bokyliu/Work/pycharm-community-2018.2.4/helpers/pydev/pydevd.py", line 1664, in <module>main()File "/home/bokyliu/Work/pycharm-community-2018.2.4/helpers/pydev/pydevd.py", line 1658, in mainglobals = debugger.run(setup['file'], None, None, is_module)File "/home/bokyliu/Work/pycharm-community-2018.2.4/helpers/pydev/pydevd.py", line 1068, in runpydev_imports.execfile(file, globals, locals)  # execute the scriptFile "/home/bokyliu/Work/pycharm-community-2018.2.4/helpers/pydev/_pydev_imps/_pydev_execfile.py", line 18, in execfileexec(compile(contents+"\n", file, 'exec'), glob, loc)File "/home/bokyliu/Project/TVM/quick-start.py", line 13, in <module>mod, params = relay.testing.resnet.get_workload(
AttributeError: module 'tvm.relay' has no attribute 'testing'

问题很无语啊,python把testing当成文件了,其实他是一个文件夹,所以修改代码为如下:

import numpy as np
# from tvm import relay
from tvm.relay.testing import resnet
import tvm
from tvm.contrib import graph_runtimebatch_size = 1
num_class = 1000
image_shape = (3, 224, 224)
data_shape = (batch_size,) + image_shape
out_shape = (batch_size, num_class)mod, params = resnet.get_workload(num_layers=18, batch_size=batch_size, image_shape=image_shape)print(mod.astext(show_meta_data=False))

成功打印出计算图:

v0.0.4
def @main(%data: Tensor[(1, 3, 224, 224), float32], %bn_data_gamma: Tensor[(3), float32], %bn_data_beta: Tensor[(3), float32], %bn_data_moving_mean: Tensor[(3), float32], %bn_data_moving_var: Tensor[(3), float32], %conv0_weight: Tensor[(64, 3, 7, 7), float32], %bn0_gamma: Tensor[(64), float32], %bn0_beta: Tensor[(64), float32], %bn0_moving_mean: Tensor[(64), float32], %bn0_moving_var: Tensor[(64), float32], %stage1_unit1_bn1_gamma: Tensor[(64), float32], %stage1_unit1_bn1_beta: Tensor[(64), float32], %stage1_unit1_bn1_moving_mean: Tensor[(64), float32], %stage1_unit1_bn1_moving_var: Tensor[(64), float32], %stage1_unit1_conv1_weight: Tensor[(64, 64, 3, 3), float32], %stage1_unit1_bn2_gamma: Tensor[(64), float32], %stage1_unit1_bn2_beta: Tensor[(64), float32], %stage1_unit1_bn2_moving_mean: Tensor[(64), float32], %stage1_unit1_bn2_moving_var: Tensor[(64), float32], %stage1_unit1_conv2_weight: Tensor[(64, 64, 3, 3), float32], %stage1_unit1_sc_weight: Tensor[(64, 64, 1, 1), float32], %stage1_unit2_bn1_gamma: Tensor[(64), float32], %stage1_unit2_bn1_beta: Tensor[(64), float32], %stage1_unit2_bn1_moving_mean: Tensor[(64), float32], %stage1_unit2_bn1_moving_var: Tensor[(64), float32], %stage1_unit2_conv1_weight: Tensor[(64, 64, 3, 3), float32], %stage1_unit2_bn2_gamma: Tensor[(64), float32], %stage1_unit2_bn2_beta: Tensor[(64), float32], %stage1_unit2_bn2_moving_mean: Tensor[(64), float32], %stage1_unit2_bn2_moving_var: Tensor[(64), float32], %stage1_unit2_conv2_weight: Tensor[(64, 64, 3, 3), float32], %stage2_unit1_bn1_gamma: Tensor[(64), float32], %stage2_unit1_bn1_beta: Tensor[(64), float32], %stage2_unit1_bn1_moving_mean: Tensor[(64), float32], %stage2_unit1_bn1_moving_var: Tensor[(64), float32], %stage2_unit1_conv1_weight: Tensor[(128, 64, 3, 3), float32], %stage2_unit1_bn2_gamma: Tensor[(128), float32], %stage2_unit1_bn2_beta: Tensor[(128), float32], %stage2_unit1_bn2_moving_mean: Tensor[(128), float32], %stage2_unit1_bn2_moving_var: Tensor[(128), float32], %stage2_unit1_conv2_weight: Tensor[(128, 128, 3, 3), float32], %stage2_unit1_sc_weight: Tensor[(128, 64, 1, 1), float32], %stage2_unit2_bn1_gamma: Tensor[(128), float32], %stage2_unit2_bn1_beta: Tensor[(128), float32], %stage2_unit2_bn1_moving_mean: Tensor[(128), float32], %stage2_unit2_bn1_moving_var: Tensor[(128), float32], %stage2_unit2_conv1_weight: Tensor[(128, 128, 3, 3), float32], %stage2_unit2_bn2_gamma: Tensor[(128), float32], %stage2_unit2_bn2_beta: Tensor[(128), float32], %stage2_unit2_bn2_moving_mean: Tensor[(128), float32], %stage2_unit2_bn2_moving_var: Tensor[(128), float32], %stage2_unit2_conv2_weight: Tensor[(128, 128, 3, 3), float32], %stage3_unit1_bn1_gamma: Tensor[(128), float32], %stage3_unit1_bn1_beta: Tensor[(128), float32], %stage3_unit1_bn1_moving_mean: Tensor[(128), float32], %stage3_unit1_bn1_moving_var: Tensor[(128), float32], %stage3_unit1_conv1_weight: Tensor[(256, 128, 3, 3), float32], %stage3_unit1_bn2_gamma: Tensor[(256), float32], %stage3_unit1_bn2_beta: Tensor[(256), float32], %stage3_unit1_bn2_moving_mean: Tensor[(256), float32], %stage3_unit1_bn2_moving_var: Tensor[(256), float32], %stage3_unit1_conv2_weight: Tensor[(256, 256, 3, 3), float32], %stage3_unit1_sc_weight: Tensor[(256, 128, 1, 1), float32], %stage3_unit2_bn1_gamma: Tensor[(256), float32], %stage3_unit2_bn1_beta: Tensor[(256), float32], %stage3_unit2_bn1_moving_mean: Tensor[(256), float32], %stage3_unit2_bn1_moving_var: Tensor[(256), float32], %stage3_unit2_conv1_weight: Tensor[(256, 256, 3, 3), float32], %stage3_unit2_bn2_gamma: Tensor[(256), float32], %stage3_unit2_bn2_beta: Tensor[(256), float32], %stage3_unit2_bn2_moving_mean: Tensor[(256), float32], %stage3_unit2_bn2_moving_var: Tensor[(256), float32], %stage3_unit2_conv2_weight: Tensor[(256, 256, 3, 3), float32], %stage4_unit1_bn1_gamma: Tensor[(256), float32], %stage4_unit1_bn1_beta: Tensor[(256), float32], %stage4_unit1_bn1_moving_mean: Tensor[(256), float32], %stage4_unit1_bn1_moving_var: Tensor[(256), float32], %stage4_unit1_conv1_weight: Tensor[(512, 256, 3, 3), float32], %stage4_unit1_bn2_gamma: Tensor[(512), float32], %stage4_unit1_bn2_beta: Tensor[(512), float32], %stage4_unit1_bn2_moving_mean: Tensor[(512), float32], %stage4_unit1_bn2_moving_var: Tensor[(512), float32], %stage4_unit1_conv2_weight: Tensor[(512, 512, 3, 3), float32], %stage4_unit1_sc_weight: Tensor[(512, 256, 1, 1), float32], %stage4_unit2_bn1_gamma: Tensor[(512), float32], %stage4_unit2_bn1_beta: Tensor[(512), float32], %stage4_unit2_bn1_moving_mean: Tensor[(512), float32], %stage4_unit2_bn1_moving_var: Tensor[(512), float32], %stage4_unit2_conv1_weight: Tensor[(512, 512, 3, 3), float32], %stage4_unit2_bn2_gamma: Tensor[(512), float32], %stage4_unit2_bn2_beta: Tensor[(512), float32], %stage4_unit2_bn2_moving_mean: Tensor[(512), float32], %stage4_unit2_bn2_moving_var: Tensor[(512), float32], %stage4_unit2_conv2_weight: Tensor[(512, 512, 3, 3), float32], %bn1_gamma: Tensor[(512), float32], %bn1_beta: Tensor[(512), float32], %bn1_moving_mean: Tensor[(512), float32], %bn1_moving_var: Tensor[(512), float32], %fc1_weight: Tensor[(1000, 512), float32], %fc1_bias: Tensor[(1000), float32]) -> Tensor[(1, 1000), float32] {%0 = nn.batch_norm(%data, %bn_data_gamma, %bn_data_beta, %bn_data_moving_mean, %bn_data_moving_var, epsilon=2e-05f, scale=False) /* ty=(Tensor[(1, 3, 224, 224), float32], Tensor[(3), float32], Tensor[(3), float32]) */;%1 = %0.0;%2 = nn.conv2d(%1, %conv0_weight, strides=[2, 2], padding=[3, 3], channels=64, kernel_size=[7, 7]) /* ty=Tensor[(1, 64, 112, 112), float32] */;...%89 = nn.bias_add(%88, %fc1_bias, axis=-1) /* ty=Tensor[(1, 1000), float32] */;nn.softmax(%89) /* ty=Tensor[(1, 1000), float32] */
}

后续继续运行例子,没有出现新的问题。但是发现在执行

loaded_lib = tvm.module.load(path_lib)

之后,运行目录下会出现deploy_lib.tar.so文件

AirFace.onnx试验

做完了上面的,有点飘了,看例子中超分辨率的onnx模型用tvm部署貌似没有很多操作,就想着把airface模型拿来试一下,毕竟最近没少为这个模型伤脑筋。于是,借用教程的代码:

onnx_model = onnx.load('/home/bokyliu/Project/TVM/airFace06.onnx')
######################################################################
# Load a test image
# ---------------------------------------------
# A single cat dominates the examples!
from PIL import Image
# img_url = 'https://github.com/dmlc/mxnet.js/blob/master/data/cat.png?raw=true'
# img_path = download_testdata(img_url, 'cat.png', module='data')
img = Image.open('/home/bokyliu/feature1.jpg').resize((112, 112))
img_arr = np.array(img).transpose(2, 0, 1)
######################################################################
# Compile the model with relay
# ---------------------------------------------
target = 'llvm'input_name = '1'
shape_dict = {input_name: img_arr.shape}
mod, params = relay.frontend.from_onnx(onnx_model, shape_dict)with relay.build_config(opt_level=1):intrp = relay.build_module.create_executor('graph', mod, tvm.cpu(0), target)######################################################################
# Execute on TVM
# ---------------------------------------------
dtype = 'float32'
tvm_output = intrp.evaluate()(tvm.nd.array(x.astype(dtype)), **params).asnumpy()

运行,提示:

Traceback (most recent call last):File "/home/bokyliu/Work/pycharm-community-2018.2.4/helpers/pydev/pydevd.py", line 1664, in <module>main()File "/home/bokyliu/Work/pycharm-community-2018.2.4/helpers/pydev/pydevd.py", line 1658, in mainglobals = debugger.run(setup['file'], None, None, is_module)File "/home/bokyliu/Work/pycharm-community-2018.2.4/helpers/pydev/pydevd.py", line 1068, in runpydev_imports.execfile(file, globals, locals)  # execute the scriptFile "/home/bokyliu/Work/pycharm-community-2018.2.4/helpers/pydev/_pydev_imps/_pydev_execfile.py", line 18, in execfileexec(compile(contents+"\n", file, 'exec'), glob, loc)File "/home/bokyliu/Project/TVM/airface_from_onnx.py", line 72, in <module>mod, params = relay.frontend.from_onnx(onnx_model, shape_dict)File "/home/bokyliu/Project/incubator-tvm/python/tvm/relay/frontend/onnx.py", line 1497, in from_onnxmod, params = g.from_onnx(graph, opset)File "/home/bokyliu/Project/incubator-tvm/python/tvm/relay/frontend/onnx.py", line 1284, in from_onnxraise ValueError("Must provide an input shape for `{0}`.".format(i_name))ValueError: Must provide an input shape for `0`.

看到这个问题,只需要将

input_name = '1' # 改为 input_name = 'input.1'

至于为什么此处要修改,经过我发现,在onnx的计算图里

graph(%input.1 : Float(1, 3, 112, 112),%conv1.conv.weight : Float(64, 3, 3, 3),%conv1.bn.weight : Float(64),...)

此处要一致,因为tvm也是按照计算图走的。
再次运行:

tvm.error.OpNotImplemented: The following operators are not supported for frontend ONNX: ATen

这个说明原始模型里面有onnx不支持的内容,应该是转onnx出错了。用pytorch1.3转onnx问题解决。
接下来换了onnx没有出现上述问题,但是想想也知道肯定会有新的问题出现:

WARNING:root:Attribute momentum is ignored in relay.sym.batch_norm
.
.
.
WARNING:root:Attribute momentum is ignored in relay.sym.batch_norm
Traceback (most recent call last):File "/home/bokyliu/Project/TVM/airface_from_onnx.py", line 73, in <module>mod, params = relay.frontend.from_onnx(onnx_model, shape_dict)File "/home/bokyliu/Project/incubator-tvm/python/tvm/relay/frontend/onnx.py", line 1497, in from_onnxmod, params = g.from_onnx(graph, opset)File "/home/bokyliu/Project/incubator-tvm/python/tvm/relay/frontend/onnx.py", line 1325, in from_onnxop = self._convert_operator(op_name, inputs, attr, opset)File "/home/bokyliu/Project/incubator-tvm/python/tvm/relay/frontend/onnx.py", line 1425, in _convert_operatorsym = convert_map[op_name](inputs, attrs, self._params)File "/home/bokyliu/Project/incubator-tvm/python/tvm/relay/frontend/onnx.py", line 470, in _impl_v5static_shape = infer_value_simulated(shape, params)File "/home/bokyliu/Project/incubator-tvm/python/tvm/relay/frontend/common.py", line 520, in infer_value_simulatedoutput_value = infer_value(input_val, params)File "/home/bokyliu/Project/incubator-tvm/python/tvm/relay/frontend/common.py", line 494, in infer_valuegraph, lib, params = tvm.relay.build(func, target="llvm", params=params)File "/home/bokyliu/Project/incubator-tvm/python/tvm/relay/build_module.py", line 244, in buildgraph_json, mod, params = bld_mod.build(func, target, target_host, params)File "/home/bokyliu/Project/incubator-tvm/python/tvm/relay/build_module.py", line 109, in buildself._build(func, target, target_host)File "/home/bokyliu/Project/incubator-tvm/python/tvm/_ffi/_ctypes/function.py", line 207, in __call__raise get_last_ffi_error()tvm._ffi.base.TVMError: Traceback (most recent call last):[bt] (8) /home/bokyliu/.local/lib/python3.6/site-packages/tvm-0.6.dev0-py3.6-linux-x86_64.egg/tvm/libtvm.so(tvm::relay::backend::RelayBuildModule::GetFunction(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, tvm::runtime::ObjectPtr<tvm::runtime::Object> const&)::{lambda(tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)#3}::operator()(tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*) const+0x1b5) [0x7f6b3cd6f6e5][bt] (7) /home/bokyliu/.local/lib/python3.6/site-packages/tvm-0.6.dev0-py3.6-linux-x86_64.egg/tvm/libtvm.so(tvm::relay::backend::RelayBuildModule::BuildRelay(tvm::relay::Function, std::unordered_map<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, tvm::runtime::NDArray, std::hash<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::equal_to<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::allocator<std::pair<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const, tvm::runtime::NDArray> > > const&)+0x5e) [0x7f6b3cd6e66e][bt] (6) /home/bokyliu/.local/lib/python3.6/site-packages/tvm-0.6.dev0-py3.6-linux-x86_64.egg/tvm/libtvm.so(tvm::relay::backend::RelayBuildModule::Optimize(tvm::relay::Function, tvm::Map<tvm::Integer, tvm::Target, void, void> const&, std::unordered_map<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, tvm::runtime::NDArray, std::hash<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::equal_to<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::allocator<std::pair<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const, tvm::runtime::NDArray> > > const&)+0xee) [0x7f6b3cd6d87e][bt] (5) /home/bokyliu/.local/lib/python3.6/site-packages/tvm-0.6.dev0-py3.6-linux-x86_64.egg/tvm/libtvm.so(tvm::relay::ModuleNode::FromExpr(tvm::relay::Expr const&, tvm::Map<tvm::relay::GlobalVar, tvm::relay::Function, void, void> const&, tvm::Map<tvm::relay::GlobalTypeVar, tvm::relay::TypeData, void, void> const&)+0x1d5) [0x7f6b3ce18825][bt] (4) /home/bokyliu/.local/lib/python3.6/site-packages/tvm-0.6.dev0-py3.6-linux-x86_64.egg/tvm/libtvm.so(tvm::relay::ModuleNode::Add(tvm::relay::GlobalVar const&, tvm::relay::Function const&, bool)+0x28c) [0x7f6b3ce163cc][bt] (3) /home/bokyliu/.local/lib/python3.6/site-packages/tvm-0.6.dev0-py3.6-linux-x86_64.egg/tvm/libtvm.so(tvm::relay::InferType(tvm::relay::Function const&, tvm::relay::Module const&, tvm::relay::GlobalVar const&)+0x1d7) [0x7f6b3cd39aa7][bt] (2) /home/bokyliu/.local/lib/python3.6/site-packages/tvm-0.6.dev0-py3.6-linux-x86_64.egg/tvm/libtvm.so(tvm::relay::TypeInferencer::Infer(tvm::relay::Expr)+0x86) [0x7f6b3cd39326][bt] (1) /home/bokyliu/.local/lib/python3.6/site-packages/tvm-0.6.dev0-py3.6-linux-x86_64.egg/tvm/libtvm.so(tvm::relay::ErrorReporter::RenderErrors(tvm::relay::Module const&, bool)+0x230c) [0x7f6b3cdf675c][bt] (0) /home/bokyliu/.local/lib/python3.6/site-packages/tvm-0.6.dev0-py3.6-linux-x86_64.egg/tvm/libtvm.so(dmlc::LogMessageFatal::~LogMessageFatal()+0x32) [0x7f6b3c724af2]File "/home/bokyliu/Project/incubator-tvm/src/relay/ir/error.cc", line 133
TVMError: 
Error(s) have occurred. The program has been annotated with them:In `main`: 
v0.0.4
fn () {%0 = nn.conv2d(meta[relay.Constant][0], meta[relay.Constant][1], strides=[2, 2], padding=[1, 1], kernel_size=[3, 3]);%1 = nn.batch_norm(%0, meta[relay.Constant][2], meta[relay.Constant][3], meta[relay.Constant][4], meta[relay.Constant][5], epsilon=1e-05f);%2 = %1.0;%3 = expand_dims(meta[relay.Constant][6], axis=1);%4 = expand_dims(%3, axis=2);%5 = nn.prelu(%2, %4) tensor type `Tensor[(64), float32]` has 1 dimensions, while `Tensor[(64, 1, 1), float32]` has 3 dimensions; unable to unify: `Tensor[(64), float32]` and `Tensor[(64, 1, 1), float32]`; ;%6 = nn.conv2d(%5, meta[relay.Constant][7], padding=[1, 1], groups=64, kernel_size=[3, 3]);

问题定位:

WARNING:root:Attribute momentum is ignored in relay.sym.batch_norm

在执行build_module.py里此句时提示WARNING

op = self._convert_operator(op_name, inputs, attr, opset) 

其中:
op_name = BatchNormalization
用断点跟进去,后续继续定位到build_module.py中

sym = convert_map[op_name](inputs, attrs, self._params)

继续命中断点
卷积层:
卷积层命中断点
bn层:
bn层命中断点
PReLU:
PReLU
觉得有意思的是PReLU的inputs,单独截了个图:
PReLU-inputs
free_var代表释放了的变量?
按照这个顺序找下去,最后一直到python/tvm/relay/op/nn/nn.py中:

def prelu(data, alpha, axis=1):"""This operator takes data as input and does Leaky versionof a Rectified Linear Unit... math::`y = x > 0 ? x : alpha * x`Parameters----------data : tvm.relay.ExprThe input data to the operator.alpha : tvm.relay.ExprSlope coefficient for the negative half axis.axis : int, optionalSpecify which shape axis the channel is specified.Returns-------result : tvm.relay.ExprThe computed result."""return _make.prelu(data, alpha, axis)

后来也是阴差阳错,在TVM的计算图中看到有两个ExpandDim操作,axis分别是:1、2!但这是哪来的呢?
想到这里,赶紧回头看了看ONNX转出时打印的graph,果然也有unsqeeze操作。
所以问题出在ONNX上,后来了解到ONNX有好几个版本,于是我换回了pytorch1.0.1,这是目前坑最少的版本。
但用pytorch1.0.1转出的ONNX里面又有ATen,没办法,只能自己向ONNX中注册ATen对应的op了。
然后就一切顺利了,模型得以跑通。但TVM编译ONNX再进行推理和TVM加载tar、json、params再进行推理的速度也有区别(cpu i5 7500),前者耗时约8s后者约330ms,都比pytorch直接运行pth(220ms)要慢。

自动优化

没什么特别的,主要是参考官方demo

这篇关于TVM踩坑记录的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/849779

相关文章

关于Spring @Bean 相同加载顺序不同结果不同的问题记录

《关于Spring@Bean相同加载顺序不同结果不同的问题记录》本文主要探讨了在Spring5.1.3.RELEASE版本下,当有两个全注解类定义相同类型的Bean时,由于加载顺序不同,最终生成的... 目录问题说明测试输出1测试输出2@Bean注解的BeanDefiChina编程nition加入时机总结问题说明

将sqlserver数据迁移到mysql的详细步骤记录

《将sqlserver数据迁移到mysql的详细步骤记录》:本文主要介绍将SQLServer数据迁移到MySQL的步骤,包括导出数据、转换数据格式和导入数据,通过示例和工具说明,帮助大家顺利完成... 目录前言一、导出SQL Server 数据二、转换数据格式为mysql兼容格式三、导入数据到MySQL数据

关于rpc长连接与短连接的思考记录

《关于rpc长连接与短连接的思考记录》文章总结了RPC项目中长连接和短连接的处理方式,包括RPC和HTTP的长连接与短连接的区别、TCP的保活机制、客户端与服务器的连接模式及其利弊分析,文章强调了在实... 目录rpc项目中的长连接与短连接的思考什么是rpc项目中的长连接和短连接与tcp和http的长连接短

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Servlet中配置和使用过滤器的步骤记录

《Servlet中配置和使用过滤器的步骤记录》:本文主要介绍在Servlet中配置和使用过滤器的方法,包括创建过滤器类、配置过滤器以及在Web应用中使用过滤器等步骤,文中通过代码介绍的非常详细,需... 目录创建过滤器类配置过滤器使用过滤器总结在Servlet中配置和使用过滤器主要包括创建过滤器类、配置过滤

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6

python与QT联合的详细步骤记录

《python与QT联合的详细步骤记录》:本文主要介绍python与QT联合的详细步骤,文章还展示了如何在Python中调用QT的.ui文件来实现GUI界面,并介绍了多窗口的应用,文中通过代码介绍... 目录一、文章简介二、安装pyqt5三、GUI页面设计四、python的使用python文件创建pytho

Node.js学习记录(二)

目录 一、express 1、初识express 2、安装express 3、创建并启动web服务器 4、监听 GET&POST 请求、响应内容给客户端 5、获取URL中携带的查询参数 6、获取URL中动态参数 7、静态资源托管 二、工具nodemon 三、express路由 1、express中路由 2、路由的匹配 3、路由模块化 4、路由模块添加前缀 四、中间件

记录每次更新到仓库 —— Git 学习笔记 10

记录每次更新到仓库 文章目录 文件的状态三个区域检查当前文件状态跟踪新文件取消跟踪(un-tracking)文件重新跟踪(re-tracking)文件暂存已修改文件忽略某些文件查看已暂存和未暂存的修改提交更新跳过暂存区删除文件移动文件参考资料 咱们接着很多天以前的 取得Git仓库 这篇文章继续说。 文件的状态 不管是通过哪种方法,现在我们已经有了一个仓库,并从这个仓