Diffuison在域自适应中 笔记

2024-03-26 16:36
文章标签 笔记 适应 在域 diffuison

本文主要是介绍Diffuison在域自适应中 笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 1 Title

        Diffusion-based Target Sampler for Unsupervised Domain Adaptation(Zhang, Yulong, Chen, Shuhao, Zhang, Yu, Lu, Jiang)【CVPR 2023】

2 Conclusion        

        large domain shifts and the sample scarcity in the target domain make existing UDA methods achieve suboptimal performance. To alleviate these issues, This study propose a plug-andplay Diffusion-based Target Sampler (DTS) to generate high fidelity and diversity pseudo target samples. By introducing class-conditional information, the labels of the generated target samples can be controlled.

3 Good Sentences

        1、Compared with those methods that generate an intermediate domain to interpolate
between the distributions of the source and target domains, the proposed DTS framework directly generates pseudo target samples that obey the target distribution. Instead of using adversarial training strategies, the proposed DTS framework is based on the DPM, which has better generation capabilities and is easier to converge in the training process(The advantages of Diffusion model when compared with other )
        2、Although DPM has obtained superior performance in image generation, it still has the problem of slow sampling speed due to thousands of denoising steps required to generate a sample of high quality, which greatly hinders the application of DPM.(The shortcomings of DPM when try to apply)
        3、Different from those GAN-based methods, the proposed diffusion-based DTS framework directly generates pseudo target samples that could obey the target distribution without adversarial training. [25] has shown that DPMs are better at covering the modes of a distribution than GANs, which well meets the needs of target data generation here. And the category and the number of samples generated can be flexibly controlled.(The innovation of this paper when compared with others)


本文提出了一种基于即插即用扩散的目标采样器(DTS)来生成高保真度和多样性的伪目标样本来解决无监督域适应(UDA)中大型域偏移和目标域中的样本稀缺的问题。具体来说,DTS是生成可以遵循目标分布的伪目标样本。这样,可以用伪目标样本来增强目标样本,从而提高UDA模型的性能。DTS将生成的目标样本和原始源样本组合为增广源域,其中使用原始源样本来抑制生成目标样本的噪声标签的影响。通过这种方式,增强源域的分布更接近目标域,这降低了域自适应(DA)的难度。请注意,所提出的DTS框架是一个即插即用模块,可以嵌入到任何现有的UDA方法中,以提高其传输性能。

如图所示,整个DTS框架分为以上三个步骤,步骤1:通过一些UDA方法获得分类器,步骤2:由步骤1中预训练的分类器分配目标样本的伪标签,并使用具有伪标签的目标样本来训练CDPM。步骤3:采用预训练的CDPM来生成目标样本,并将这些生成的目标样本与原始源样本组合作为增广源域

作为一个即插即用模块,插进去了之后还是有所提升的

这篇关于Diffuison在域自适应中 笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/849130

相关文章

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析

Python中__new__()方法适应及注意事项详解

《Python中__new__()方法适应及注意事项详解》:本文主要介绍Python中__new__()方法适应及注意事项的相关资料,new()方法是Python中的一个特殊构造方法,用于在创建对... 目录前言基本用法返回值单例模式自定义对象创建注意事项总结前言new() 方法在 python 中是一个

C#中图片如何自适应pictureBox大小

《C#中图片如何自适应pictureBox大小》文章描述了如何在C#中实现图片自适应pictureBox大小,并展示修改前后的效果,修改步骤包括两步,作者分享了个人经验,希望对大家有所帮助... 目录C#图片自适应pictureBox大小编程修改步骤总结C#图片自适应pictureBox大小上图中“z轴

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

数学建模笔记—— 非线性规划

数学建模笔记—— 非线性规划 非线性规划1. 模型原理1.1 非线性规划的标准型1.2 非线性规划求解的Matlab函数 2. 典型例题3. matlab代码求解3.1 例1 一个简单示例3.2 例2 选址问题1. 第一问 线性规划2. 第二问 非线性规划 非线性规划 非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。2

【C++学习笔记 20】C++中的智能指针

智能指针的功能 在上一篇笔记提到了在栈和堆上创建变量的区别,使用new关键字创建变量时,需要搭配delete关键字销毁变量。而智能指针的作用就是调用new分配内存时,不必自己去调用delete,甚至不用调用new。 智能指针实际上就是对原始指针的包装。 unique_ptr 最简单的智能指针,是一种作用域指针,意思是当指针超出该作用域时,会自动调用delete。它名为unique的原因是这个

查看提交历史 —— Git 学习笔记 11

查看提交历史 查看提交历史 不带任何选项的git log-p选项--stat 选项--pretty=oneline选项--pretty=format选项git log常用选项列表参考资料 在提交了若干更新,又或者克隆了某个项目之后,你也许想回顾下提交历史。 完成这个任务最简单而又有效的 工具是 git log 命令。 接下来的例子会用一个用于演示的 simplegit

记录每次更新到仓库 —— Git 学习笔记 10

记录每次更新到仓库 文章目录 文件的状态三个区域检查当前文件状态跟踪新文件取消跟踪(un-tracking)文件重新跟踪(re-tracking)文件暂存已修改文件忽略某些文件查看已暂存和未暂存的修改提交更新跳过暂存区删除文件移动文件参考资料 咱们接着很多天以前的 取得Git仓库 这篇文章继续说。 文件的状态 不管是通过哪种方法,现在我们已经有了一个仓库,并从这个仓