Keras(七)TF2中基础的数据类型API介绍

2024-03-26 15:48

本文主要是介绍Keras(七)TF2中基础的数据类型API介绍,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文将介绍如下内容:

  • tf.constant
  • tf.strings
  • tf.ragged.constant
  • tf.SparseTensor
  • tf.Variable

一,tf.constant常量

1,定义tf.constant常量
t = tf.constant([[1., 2., 3.], [4., 5., 6.]])
print(t)#----output------------
tf.Tensor(
[[1. 2. 3.][4. 5. 6.]], shape=(2, 3), dtype=float32)
2,根据index索引切片

tf.constant可以使用索引进行切片操作

t = tf.constant([[1., 2., 3.], [4., 5., 6.]])
print(t[..., 1:])
print(t[:, 1])#----output------------
tf.Tensor(
[[2. 3.][5. 6.]], shape=(2, 2), dtype=float32)
tf.Tensor([2. 5.], shape=(2,), dtype=float32)
3,算子操作
t = tf.constant([[1., 2., 3.], [4., 5., 6.]])
print(t+10)
print(tf.square(t))
print(t @ tf.transpose(t))	# 矩阵与其转置相乘#----output------------
tf.Tensor(
[[11. 12. 13.][14. 15. 16.]], shape=(2, 3), dtype=float32)
tf.Tensor(
[[ 1.  4.  9.][16. 25. 36.]], shape=(2, 3), dtype=float32)
tf.Tensor(
[[14. 32.][32. 77.]], shape=(2, 2), dtype=float32)
4,与numpy之间的转换
print(t.numpy())
print(np.square(t))
np_t = np.array([[1., 2., 3.], [4., 5., 6.]])
print(tf.constant(np_t))#----output------------
[[1. 2. 3.][4. 5. 6.]]
[[ 1.  4.  9.][16. 25. 36.]]
tf.Tensor(
[[1. 2. 3.][4. 5. 6.]], shape=(2, 3), dtype=float64)
5,零维数据的定义和转换
# Scalars
t = tf.constant(2.718)
print(t.numpy())
print(t.shape)#----output------------
2.718
()

二,tf.strings字符串常量

1,纯英文字符的UTF8编码对应码
t = tf.constant("cafe")
print(t)
print(tf.strings.length(t))
print(tf.strings.length(t, unit="UTF8_CHAR"))
print(tf.strings.unicode_decode(t, "UTF8"))#----output------------
tf.Tensor(b'cafe', shape=(), dtype=string)
tf.Tensor(4, shape=(), dtype=int32)
tf.Tensor(4, shape=(), dtype=int32)
tf.Tensor([ 99  97 102 101], shape=(4,), dtype=int32)
2,含中文字符的UTF8编码对应码
t = tf.constant(["cafe", "coffee", "咖啡"])
print(tf.strings.length(t))
print(tf.strings.length(t, unit="UTF8_CHAR"))
r = tf.strings.unicode_decode(t, "UTF8")
print(r)#----output------------
tf.Tensor([4 6 6], shape=(3,), dtype=int32)
tf.Tensor([4 6 2], shape=(3,), dtype=int32)
<tf.RaggedTensor [[99, 97, 102, 101], [99, 111, 102, 102, 101, 101], [21654, 21857]]>

三,tf.ragged.constant

在定义TF常量时,如果数据类型不是标准的矩阵,可以使用tf.ragged.constant来处理

1,tf.ragged_tensor的索引切片操作
r = tf.ragged.constant([[11, 12], [21, 22, 23], [], [41]])
print(r)
print(r[1])
print(r[1:2])#------output------
<tf.RaggedTensor [[11, 12], [21, 22, 23], [], [41]]>
tf.Tensor([21 22 23], shape=(3,), dtype=int32)
<tf.RaggedTensor [[21, 22, 23]]>
2,tf.ragged_tensor的行拼接操作
r = tf.ragged.constant([[11, 12], [21, 22, 23], [], [41]])
r2 = tf.ragged.constant([[51, 52], [], [71]])
print(tf.concat([r, r2], axis = 0))#------output------
<tf.RaggedTensor [[11, 12], [21, 22, 23], [], [41], [51, 52], [], [71]]>
3,tf.ragged_tensor的列拼接操作

注意: 对于列拼接,需要行数必须相同,否则会报错!

r = tf.ragged.constant([[11, 12], [21, 22, 23], [], [41]])
r3 = tf.ragged.constant([[13, 14], [15], [], [42, 43]])
print(tf.concat([r, r3], axis = 1))#------output------
<tf.RaggedTensor [[11, 12, 13, 14], [21, 22, 23, 15], [], [41, 42, 43]]>
4,将tf.RaggedTensor 转化为 tf.Tensor(使用0来补空位)

注意: 因为tf.RaggedTensor为不规则矩阵,所以转化时会使用0来补空位,填补在真实值后。

r = tf.ragged.constant([[11, 12], [21, 22, 23], [], [41]])
print(r.to_tensor())#------output------
tf.Tensor(
[[11 12  0][21 22 23][ 0  0  0][41  0  0]], shape=(4, 3), dtype=int32)

四,tf.SparseTensor

tf.ragged.constant中的填充数只能在真实值的后面,可以使用tf.SparseTensor类型解决此问题。

1,tf.SparseTensor的定义
s = tf.SparseTensor(indices = [[0, 1], [1, 0], [2, 3]],values = [1., 2., 3.],dense_shape = [3, 4])
print(s)#------output------
SparseTensor(indices=tf.Tensor(
[[0 1][1 0][2 3]], shape=(3, 2), dtype=int64), values=tf.Tensor([1. 2. 3.], shape=(3,), dtype=float32), dense_shape=tf.Tensor([3 4], shape=(2,), dtype=int64))
2,将tf.SparseTensor转为tf.Tensor密集矩阵
s = tf.SparseTensor(indices = [[0, 1], [1, 0], [2, 3]],values = [1., 2., 3.],dense_shape = [3, 4])
print(tf.sparse.to_dense(s)) # ---output------
tf.Tensor(
[[0. 1. 0. 0.][2. 0. 0. 0.][0. 0. 0. 3.]], shape=(3, 4), dtype=float32)

注意:若indices位置颠倒,tf.SparseTensor无法转为tf.Tensor密集矩阵.可先使用tf.sparse.reorder排序。

s5 = tf.SparseTensor(indices = [[0, 2], [0, 1], [2, 3]],values = [1., 2., 3.],dense_shape = [3, 4])
print(s5)
s6 = tf.sparse.reorder(s5)
print(tf.sparse.to_dense(s6))#-----output----------
SparseTensor(indices=tf.Tensor(
[[0 2][0 1][2 3]], shape=(3, 2), dtype=int64), values=tf.Tensor([1. 2. 3.], shape=(3,), dtype=float32), dense_shape=tf.Tensor([3 4], shape=(2,), dtype=int64))
tf.Tensor(
[[0. 2. 1. 0.][0. 0. 0. 0.][0. 0. 0. 3.]], shape=(3, 4), dtype=float32)
3,tf.SparseTensor的计算
s = tf.SparseTensor(indices = [[0, 1], [1, 0], [2, 3]],values = [1., 2., 3.],dense_shape = [3, 4])
print(s)
# 将tf.SparseTensor转为tf.Tensor密集矩阵
print(tf.sparse.to_dense(s)) 
# tf.SparseTensor的计算
s2 = s * 2.0
print(s2)# tf.SparseTensor不支持加法计算
try:s3 = s + 1
except TypeError as ex:print(ex)s4 = tf.constant([[10., 20.],[30., 40.],[50., 60.],[70., 80.]])
print(tf.sparse.sparse_dense_matmul(s, s4))#---output----------
SparseTensor(indices=tf.Tensor(
[[0 1][1 0][2 3]], shape=(3, 2), dtype=int64), values=tf.Tensor([1. 2. 3.], shape=(3,), dtype=float32), dense_shape=tf.Tensor([3 4], shape=(2,), dtype=int64))
tf.Tensor(
[[0. 1. 0. 0.][2. 0. 0. 0.][0. 0. 0. 3.]], shape=(3, 4), dtype=float32)
SparseTensor(indices=tf.Tensor(
[[0 1][1 0][2 3]], shape=(3, 2), dtype=int64), values=tf.Tensor([2. 4. 6.], shape=(3,), dtype=float32), dense_shape=tf.Tensor([3 4], shape=(2,), dtype=int64))
unsupported operand type(s) for +: 'SparseTensor' and 'int'
tf.Tensor(
[[ 30.  40.][ 20.  40.][210. 240.]], shape=(3, 2), dtype=float32)

五,tf.Variable

1 ,tf.Variable的定义
v = tf.Variable([[1., 2., 3.], [4., 5., 6.]])
print(v)			# 打印变量
print(v.value()) 	# 将变量变成tensor
print(v.numpy())	# 打印具体的数值# ---output------
<tf.Variable 'Variable:0' shape=(2, 3) dtype=float32, numpy=
array([[1., 2., 3.],[4., 5., 6.]], dtype=float32)>
tf.Tensor(
[[1. 2. 3.][4. 5. 6.]], shape=(2, 3), dtype=float32)
[[1. 2. 3.][4. 5. 6.]]
2,tf.Variable的赋值
# assign value
v.assign(2*v)
print(v.numpy())
v[0, 1].assign(42)
print(v.numpy())
v[1].assign([7., 8., 9.])
print(v.numpy())# ----output-----
[[ 2.  4.  6.][ 8. 10. 12.]]
[[ 2. 42.  6.][ 8. 10. 12.]]
[[ 2. 42.  6.][ 7.  8.  9.]]

注意:变量的赋值只能用assign函数,不能使用=赋值

try:v[1] = [7., 8., 9.]
except TypeError as ex:print(ex)# ----output-----
'ResourceVariable' object does not support item assignment

这篇关于Keras(七)TF2中基础的数据类型API介绍的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/849005

相关文章

Python进阶之Excel基本操作介绍

《Python进阶之Excel基本操作介绍》在现实中,很多工作都需要与数据打交道,Excel作为常用的数据处理工具,一直备受人们的青睐,本文主要为大家介绍了一些Python中Excel的基本操作,希望... 目录概述写入使用 xlwt使用 XlsxWriter读取修改概述在现实中,很多工作都需要与数据打交

java脚本使用不同版本jdk的说明介绍

《java脚本使用不同版本jdk的说明介绍》本文介绍了在Java中执行JavaScript脚本的几种方式,包括使用ScriptEngine、Nashorn和GraalVM,ScriptEngine适用... 目录Java脚本使用不同版本jdk的说明1.使用ScriptEngine执行javascript2.

Rust 数据类型详解

《Rust数据类型详解》本文介绍了Rust编程语言中的标量类型和复合类型,标量类型包括整数、浮点数、布尔和字符,而复合类型则包括元组和数组,标量类型用于表示单个值,具有不同的表示和范围,本文介绍的非... 目录一、标量类型(Scalar Types)1. 整数类型(Integer Types)1.1 整数字

Python实现NLP的完整流程介绍

《Python实现NLP的完整流程介绍》这篇文章主要为大家详细介绍了Python实现NLP的完整流程,文中的示例代码讲解详细,具有一定的借鉴价值,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 编程安装和导入必要的库2. 文本数据准备3. 文本预处理3.1 小写化3.2 分词(Tokenizatio

使用SpringBoot创建一个RESTful API的详细步骤

《使用SpringBoot创建一个RESTfulAPI的详细步骤》使用Java的SpringBoot创建RESTfulAPI可以满足多种开发场景,它提供了快速开发、易于配置、可扩展、可维护的优点,尤... 目录一、创建 Spring Boot 项目二、创建控制器类(Controller Class)三、运行

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

性能测试介绍

性能测试是一种测试方法,旨在评估系统、应用程序或组件在现实场景中的性能表现和可靠性。它通常用于衡量系统在不同负载条件下的响应时间、吞吐量、资源利用率、稳定性和可扩展性等关键指标。 为什么要进行性能测试 通过性能测试,可以确定系统是否能够满足预期的性能要求,找出性能瓶颈和潜在的问题,并进行优化和调整。 发现性能瓶颈:性能测试可以帮助发现系统的性能瓶颈,即系统在高负载或高并发情况下可能出现的问题

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]