Python并发编程的三种方式:多线程(threading)、多进程(multiprocessing),以及基于协程的异步I/O(asyncio)

本文主要是介绍Python并发编程的三种方式:多线程(threading)、多进程(multiprocessing),以及基于协程的异步I/O(asyncio),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在Python中,多线程、多进程和基于协程的异步I/O是实现并发编程的三种主要方法。每种方法都有其特定的使用场景和优势。理解这些不同方法的基础原理和适用情境对于编写高效、可扩展的Python程序至关重要。

多线程(threading

  • 概念:多线程允许程序在同一时间执行多个任务。每个线程代表一个执行序列,这意味着程序可以在一个核心或多个核心上并行执行多个线程。
  • 适用场景:适用于I/O密集型任务,如文件读写、网络请求等,因为在等待I/O操作完成时,其他线程可以继续执行。
  • 限制:由于Python的全局解释器锁(GIL),在执行CPU密集型任务时,多线程可能不会带来性能上的提升,因为GIL限制了同一时间只有一个线程能执行Python字节码。因此,对于计算密集型任务,多线程在多核处理器上并不总是能有效利用多核的优势。
代码实现

使用threading模块创建并启动线程:

import threading
import timedef thread_function(name):print(f"Thread {name}: starting")time.sleep(2)print(f"Thread {name}: finishing")if __name__ == "__main__":print("Main    : before creating thread")x = threading.Thread(target=thread_function, args=(1,))print("Main    : before running thread")x.start()print("Main    : wait for the thread to finish")# x.join() # Uncomment this to wait for the thread to finishprint("Main    : all done")

多进程(multiprocessing

  • 概念:多进程通过创建多个进程来实现并发,每个进程在其自己的Python解释器中运行,并且拥有独立的内存空间。
  • 适用场景:适合CPU密集型任务。由于每个进程有自己的GIL和内存空间,多进程能够真正并行地在多核CPU上运行,从而充分利用多核处理器的计算能力。
  • 限制:创建进程的开销比创建线程大,进程间通信(IPC)比线程间通信更复杂、成本更高。因此,对于需要频繁通信的任务,多进程可能不如多线程高效。
代码实现

使用multiprocessing模块创建并启动进程:

from multiprocessing import Process
import os
import timedef process_function(name):print(f"Process {name}: starting")time.sleep(2)print(f"Process {name}: finishing")if __name__ == '__main__':print("Main    : before creating process")p = Process(target=process_function, args=(1,))print("Main    : before running process")p.start()print("Main    : wait for the process to finish")# p.join() # Uncomment this to wait for the process to finishprint("Main    : all done")

基于协程的异步I/O(asyncio

  • 概念asyncio是Python用于编写单线程并发代码的库,通过事件循环和协程实现。协程允许任务在等待I/O操作时挂起,让出控制权给事件循环,以执行其他任务。
  • 适用场景:特别适合I/O密集型应用,如大规模网络爬虫、网络服务器等。在这些应用中,程序经常需要等待外部操作,如网络响应或磁盘I/O,asyncio可以在这些I/O等待时间中执行其他任务,从而提高程序的整体效率。
  • 限制:编写异步代码的复杂性高于同步代码,因为你需要管理事件循环,并使用asyncawait关键字正确地编写协程。此外,异步编程模型不适用于CPU密集型任务,因为它们主要通过单线程执行。
代码实现

使用asyncio模块实现异步I/O:

import asyncioasync def async_function(name):print(f"Task {name}: starting")await asyncio.sleep(2)  # 模拟I/O操作print(f"Task {name}: finishing")async def main():print("Main    : before creating task")# 创建并启动任务task1 = asyncio.create_task(async_function(1))task2 = asyncio.create_task(async_function(2))print("Main    : wait for the tasks to finish")await task1await task2print("Main    : all done")# Python 3.7及以上
asyncio.run(main())

注意事项

  • 在多线程和多进程的示例中,join()方法被注释掉了。如果取消注释,主程序将等待线程或进程完成其任务后再继续执行。这对于理解并发执行与程序等待同步完成的区别很有帮助。
  • asyncio的示例中,asyncio.run(main())启动了事件循环,运行了主协程main(),在其中又并发运行了两个异步任务。这演示了异步编程中任务调度和并发执行的基本原理。
  • 这些代码示例旨在展示每种并发模型的基本结构和用法,实际应用中可能需要更复杂的错误处理和性能优化。

总结

选择哪种并发模型取决于你的具体需求:

  • 对于I/O密集型任务,使用多线程或asyncio
  • 对于需要大量计算并希望利用多核CPU的应用,使用多进程。
  • 当需要同时处理大量网络连接时,考虑使用asyncio

正确地结合使用这些模型,可以让你的Python程序在不同的场景下达到最优性能

这篇关于Python并发编程的三种方式:多线程(threading)、多进程(multiprocessing),以及基于协程的异步I/O(asyncio)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/848575

相关文章

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Python进阶之Excel基本操作介绍

《Python进阶之Excel基本操作介绍》在现实中,很多工作都需要与数据打交道,Excel作为常用的数据处理工具,一直备受人们的青睐,本文主要为大家介绍了一些Python中Excel的基本操作,希望... 目录概述写入使用 xlwt使用 XlsxWriter读取修改概述在现实中,很多工作都需要与数据打交

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

利用Python编写一个简单的聊天机器人

《利用Python编写一个简单的聊天机器人》这篇文章主要为大家详细介绍了如何利用Python编写一个简单的聊天机器人,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 使用 python 编写一个简单的聊天机器人可以从最基础的逻辑开始,然后逐步加入更复杂的功能。这里我们将先实现一个简单的

基于Python开发电脑定时关机工具

《基于Python开发电脑定时关机工具》这篇文章主要为大家详细介绍了如何基于Python开发一个电脑定时关机工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 简介2. 运行效果3. 相关源码1. 简介这个程序就像一个“忠实的管家”,帮你按时关掉电脑,而且全程不需要你多做

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

Python xmltodict实现简化XML数据处理

《Pythonxmltodict实现简化XML数据处理》Python社区为提供了xmltodict库,它专为简化XML与Python数据结构的转换而设计,本文主要来为大家介绍一下如何使用xmltod... 目录一、引言二、XMLtodict介绍设计理念适用场景三、功能参数与属性1、parse函数2、unpa

Mybatis官方生成器的使用方式

《Mybatis官方生成器的使用方式》本文详细介绍了MyBatisGenerator(MBG)的使用方法,通过实际代码示例展示了如何配置Maven插件来自动化生成MyBatis项目所需的实体类、Map... 目录1. MyBATis Generator 简介2. MyBatis Generator 的功能3