Python并发编程的三种方式:多线程(threading)、多进程(multiprocessing),以及基于协程的异步I/O(asyncio)

本文主要是介绍Python并发编程的三种方式:多线程(threading)、多进程(multiprocessing),以及基于协程的异步I/O(asyncio),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在Python中,多线程、多进程和基于协程的异步I/O是实现并发编程的三种主要方法。每种方法都有其特定的使用场景和优势。理解这些不同方法的基础原理和适用情境对于编写高效、可扩展的Python程序至关重要。

多线程(threading

  • 概念:多线程允许程序在同一时间执行多个任务。每个线程代表一个执行序列,这意味着程序可以在一个核心或多个核心上并行执行多个线程。
  • 适用场景:适用于I/O密集型任务,如文件读写、网络请求等,因为在等待I/O操作完成时,其他线程可以继续执行。
  • 限制:由于Python的全局解释器锁(GIL),在执行CPU密集型任务时,多线程可能不会带来性能上的提升,因为GIL限制了同一时间只有一个线程能执行Python字节码。因此,对于计算密集型任务,多线程在多核处理器上并不总是能有效利用多核的优势。
代码实现

使用threading模块创建并启动线程:

import threading
import timedef thread_function(name):print(f"Thread {name}: starting")time.sleep(2)print(f"Thread {name}: finishing")if __name__ == "__main__":print("Main    : before creating thread")x = threading.Thread(target=thread_function, args=(1,))print("Main    : before running thread")x.start()print("Main    : wait for the thread to finish")# x.join() # Uncomment this to wait for the thread to finishprint("Main    : all done")

多进程(multiprocessing

  • 概念:多进程通过创建多个进程来实现并发,每个进程在其自己的Python解释器中运行,并且拥有独立的内存空间。
  • 适用场景:适合CPU密集型任务。由于每个进程有自己的GIL和内存空间,多进程能够真正并行地在多核CPU上运行,从而充分利用多核处理器的计算能力。
  • 限制:创建进程的开销比创建线程大,进程间通信(IPC)比线程间通信更复杂、成本更高。因此,对于需要频繁通信的任务,多进程可能不如多线程高效。
代码实现

使用multiprocessing模块创建并启动进程:

from multiprocessing import Process
import os
import timedef process_function(name):print(f"Process {name}: starting")time.sleep(2)print(f"Process {name}: finishing")if __name__ == '__main__':print("Main    : before creating process")p = Process(target=process_function, args=(1,))print("Main    : before running process")p.start()print("Main    : wait for the process to finish")# p.join() # Uncomment this to wait for the process to finishprint("Main    : all done")

基于协程的异步I/O(asyncio

  • 概念asyncio是Python用于编写单线程并发代码的库,通过事件循环和协程实现。协程允许任务在等待I/O操作时挂起,让出控制权给事件循环,以执行其他任务。
  • 适用场景:特别适合I/O密集型应用,如大规模网络爬虫、网络服务器等。在这些应用中,程序经常需要等待外部操作,如网络响应或磁盘I/O,asyncio可以在这些I/O等待时间中执行其他任务,从而提高程序的整体效率。
  • 限制:编写异步代码的复杂性高于同步代码,因为你需要管理事件循环,并使用asyncawait关键字正确地编写协程。此外,异步编程模型不适用于CPU密集型任务,因为它们主要通过单线程执行。
代码实现

使用asyncio模块实现异步I/O:

import asyncioasync def async_function(name):print(f"Task {name}: starting")await asyncio.sleep(2)  # 模拟I/O操作print(f"Task {name}: finishing")async def main():print("Main    : before creating task")# 创建并启动任务task1 = asyncio.create_task(async_function(1))task2 = asyncio.create_task(async_function(2))print("Main    : wait for the tasks to finish")await task1await task2print("Main    : all done")# Python 3.7及以上
asyncio.run(main())

注意事项

  • 在多线程和多进程的示例中,join()方法被注释掉了。如果取消注释,主程序将等待线程或进程完成其任务后再继续执行。这对于理解并发执行与程序等待同步完成的区别很有帮助。
  • asyncio的示例中,asyncio.run(main())启动了事件循环,运行了主协程main(),在其中又并发运行了两个异步任务。这演示了异步编程中任务调度和并发执行的基本原理。
  • 这些代码示例旨在展示每种并发模型的基本结构和用法,实际应用中可能需要更复杂的错误处理和性能优化。

总结

选择哪种并发模型取决于你的具体需求:

  • 对于I/O密集型任务,使用多线程或asyncio
  • 对于需要大量计算并希望利用多核CPU的应用,使用多进程。
  • 当需要同时处理大量网络连接时,考虑使用asyncio

正确地结合使用这些模型,可以让你的Python程序在不同的场景下达到最优性能

这篇关于Python并发编程的三种方式:多线程(threading)、多进程(multiprocessing),以及基于协程的异步I/O(asyncio)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/848575

相关文章

SpringBoot中@Value注入静态变量方式

《SpringBoot中@Value注入静态变量方式》SpringBoot中静态变量无法直接用@Value注入,需通过setter方法,@Value(${})从属性文件获取值,@Value(#{})用... 目录项目场景解决方案注解说明1、@Value("${}")使用示例2、@Value("#{}"php

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

MySQL的JDBC编程详解

《MySQL的JDBC编程详解》:本文主要介绍MySQL的JDBC编程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、前置知识1. 引入依赖2. 认识 url二、JDBC 操作流程1. JDBC 的写操作2. JDBC 的读操作总结前言本文介绍了mysq

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下