[C语言]中,为什么整型数据以浮点型输出(或浮点数类型的数据以整型输出),其输出的结果与我们预期的大相径庭?这篇博客,带你拨开云雾见月明。

本文主要是介绍[C语言]中,为什么整型数据以浮点型输出(或浮点数类型的数据以整型输出),其输出的结果与我们预期的大相径庭?这篇博客,带你拨开云雾见月明。,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在我们学习C语言的过程中,可能会出现这样的情况:我们定义了一个整型数据,想以浮点型输出,结果却不是我们预想的那样。比如:

#include<stdio.h>
int main()
{int a = 7;float* pFloat = (float*)&a;printf("a的值为:%d\n", a);printf("*pFloat的值为:%f\n", *pFloat);*pFloat = 7.0;printf("a的值为:%d\n", a);printf("*pFloat的值为:%f\n", *pFloat);return 0;
}

我们预想的结果应该是 :7  7.000000   7  7.000000

但是天不遂人愿,程序输出的结果如下:

8580cc3320ab468ca60d776718ddc284.png

 

 这样的输出结果,肯定是有原因的。我们可以设想:有没有可能,是因为int和float的存储方式不同呢?

答案确实是这样。


根据国际标准IEEE(电气和电子工程协会)754,任意一个二进制浮点数V可以表示成以下形式:

(-1)^S * M * 2^E

 

(-1)^S  表示符号位,当S=0,V为正数;当S=1,V为负数。

M表示有效数字,大于等于1,小于2

2^E表示指数位


现在我们就来仔细研究一下这个式子((-1)^S * M * 2^E)到底是什么意思。

08b668433d0e4091ab84161c20031cb8.png

 在看完以上这个例子之后,相信你对浮点数的表示已经有了一定的理解。


那么,理解了浮点数的表示形式之后,它又是怎么存储的呢?

IEEE 754规定:

对于32位的浮点数,最高的1位是符号位S,接着的8位是指数E,剩下的23位为有效数字M。

bb2a83ae5322495ba2a3febb8a43e0b7.png

 对于64位的浮点数,最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M。

我们这里主要讨论单精度浮点数。对于双精度浮点数来说,原理相同。


IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的小数部分。比如保存1.01的时候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第一位的1舍去以后,等于可以保存24位有效数字。

至于指数E,情况就比较复杂。
首先,E为一个无符号整数(unsigned int)。
这意味着,如果E为8位,它的取值范围为0~255;如果E为11位,它的取值范围为0~2047。但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。
 

对于E来说,

  • E不全为0或不全为1

这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将
有效数字M前加上第一位的1。
比如:
0.5(1/2)的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为
1.0*2^(-1),其阶码为-1+127=126,表示为01111110,而尾数1.0去掉整数部分为0,补齐0到23位00000000000000000000000,则其二进制表示形式为:

0 01111110 00000000000000000000000

 

 

  • E全为0

这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于0的很小的数字。

 

  • E全为1

这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s)。


那么,我们回到一开始的代码。

8580cc3320ab468ca60d776718ddc284.png

 

23db74cae44d41cfaf9aca047fc4f519.png

这就是用%f来输出整型7时,结果为0.000000的原因。


 下面则是用%d来输出浮点型7.0时,结果为1088421888的原因。

4f24b91c26624e7bbfa2eccbfff06282.png
 

相信你已经对C语言中浮点数存储规则有了更加深入的了解。

我们在使用C语言时,需要多加注意,避免出现这类错误。

 

 

这篇关于[C语言]中,为什么整型数据以浮点型输出(或浮点数类型的数据以整型输出),其输出的结果与我们预期的大相径庭?这篇博客,带你拨开云雾见月明。的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/848260

相关文章

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

在Linux中改变echo输出颜色的实现方法

《在Linux中改变echo输出颜色的实现方法》在Linux系统的命令行环境下,为了使输出信息更加清晰、突出,便于用户快速识别和区分不同类型的信息,常常需要改变echo命令的输出颜色,所以本文给大家介... 目python录在linux中改变echo输出颜色的方法技术背景实现步骤使用ANSI转义码使用tpu

Go语言中make和new的区别及说明

《Go语言中make和new的区别及说明》:本文主要介绍Go语言中make和new的区别及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1 概述2 new 函数2.1 功能2.2 语法2.3 初始化案例3 make 函数3.1 功能3.2 语法3.3 初始化

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

Go语言中nil判断的注意事项(最新推荐)

《Go语言中nil判断的注意事项(最新推荐)》本文给大家介绍Go语言中nil判断的注意事项,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1.接口变量的特殊行为2.nil的合法类型3.nil值的实用行为4.自定义类型与nil5.反射判断nil6.函数返回的

Go语言数据库编程GORM 的基本使用详解

《Go语言数据库编程GORM的基本使用详解》GORM是Go语言流行的ORM框架,封装database/sql,支持自动迁移、关联、事务等,提供CRUD、条件查询、钩子函数、日志等功能,简化数据库操作... 目录一、安装与初始化1. 安装 GORM 及数据库驱动2. 建立数据库连接二、定义模型结构体三、自动迁

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查