【考研数学二】线性代数重点笔记

2024-03-26 06:12

本文主要是介绍【考研数学二】线性代数重点笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

第一章 行列式

1.1 行列式的几何意义

1.2 什么是线性相关,线性无关

1.3 行列式几何意义

1.4 行列式求和

1.5 行列式其他性质

1.6 余子式

1.7 对角线行列式

1.8 分块行列式

1.9 范德蒙德行列式

1.10 爪形行列式的计算

第二章 矩阵

2.1 初识矩阵

2.1.1 矩阵的概念

1.1.2 矩阵的运算规律

2.2 矩阵的转置

2.3 伴随矩阵

2.3.1 伴随矩阵的定义

2.3.2 伴随矩阵的性质

2.4 矩阵的逆

2.4.1 逆矩阵的定义

2.4.2 逆矩阵的性质

2.4.3 矩阵逆的公式

2.5 转置、伴随、逆

2.6 矩阵的初等变换

2.6.1 矩阵等价的条件

2.6.2 初等矩阵的性质

2.6.3 初等矩阵的逆、转置和伴随

2.6.4 可逆矩阵方程

第三章 矩阵的秩

3.1 引出矩阵方程的秩:

3.2 矩阵秩的定义

3.3 矩阵秩的性质

3.4 矩阵秩的结论

3.4.1 秩的结论1

3.4.2 秩的结论2

3.4.3 秩的结论3

3.4.4 秩的结论4

3.4.5 秩的结论5

3.4.6 秩的结论6

3.5 矩阵秩的例题

第四章 向量组

4.1 向量的定义

4.2 线性表示

4.3 向量组等价

4.3.1 向量组等价定义:

4.3.2 矩阵等价和向量组等价

4.3.3 向量等价的推论

4.4 线性相关性

4.4.1 线性相关性定义

4.4.2 线性相关与秩的关系

4.4.3 线性相关的例题

4.4.4 关于线性相关的定义

4.5. 极大无关组

4.6. 向量组的秩

第五章 线性方程组

5.1 方程的解的判定

5.1.1 齐次方程的解的判定

5.1.2 非齐次方程的解的判定

5.2 方程组求解的例题

5.3 基础解系

5.4 解的结构

5.5 求通解的步骤

第六章 特征值和特征向量

6.1 特征值和特征向量的定义

6.2 特征值的性质

6.3 特征向量的性质

第七章 相识对角化

7.1 相似矩阵的定义

7.2 相似矩阵的性质

7.3 相似对角化

7.4 相似对角化的性质

7.5 秩为一的矩阵

7.6 合同最小化

7.6.1 实对称矩阵的性质

7.6.2 例题

 第八章 二次型

8.1. 合同对角化与正交变换法的步骤:


第一章 行列式

1.1 行列式的几何意义

答:2阶行列式是一个平行四边形的面积,3阶行列式是一个3个向量组成的平行六面体的体积,n阶行列式是n个向量为邻边的n维图形的体积。

1.2 什么是线性相关,线性无关

1.3 行列式几何意义

  • 2阶行列式中的其中一行为0,则组不成面积,3阶行列式中的其中一行为0,则组不成体积,2阶行列式中的其中两行(列)相等,则组不成面积,3阶行列式中的其中两行(列)相等,则组不成体积。
  • 若行列式中某行(列)元素有公因子K,则K可提到行列式外面,即几何理解:例如:2阶行列式中的其中一行乘以K,则面积就是K倍。

1.4 行列式求和

行列式中某行(列)元素均是两个元素之和,则可拆成两个行列式之和,即

1.5 行列式其他性质

  • 行列式中两行(列)互换,行列式的值反号.
  • 行列式中某行(列)的K倍加到另一行(列),行列式的值不变

例题:求一下下面的:

技巧:

1、取完第一个数字,就要去掉所在行和所在列

2、前面的额正负号可以用交换改变逆序数的正负号的方法。

2阶行列式和3阶行列式的计算。(用到的是画图发)

1.6 余子式

什么是余子式和代数余子式,并一般用什么表示?

行列式按某一行(列)展开的展开公式

1.7 对角线行列式

1.8 分块行列式

A为m 阶矩阵,B为 阶矩阵则

1.9 范德蒙德行列式

1.10 爪形行列式的计算

例如:


第二章 矩阵

2.1 初识矩阵

2.1.1 矩阵的概念

矩阵就是一个数表,就和1,2,3的性质一样。

行列式是一种运算符号,就和加减乘除一样。

注意:

1.1.2 矩阵的运算规律

例1:

例2:

例3

例4

2.2 矩阵的转置

矩阵的性质1:

矩阵的性质2: 

来个例题: 

2.3 伴随矩阵

2.3.1 伴随矩阵的定义

          

2.3.2 伴随矩阵的性质

证明下列:

2.4 矩阵的逆

2.4.1 逆矩阵的定义

AB = BA = E

2.4.2 逆矩阵的性质

           

2.4.3 矩阵逆的公式

2.5 转置、伴随、逆

2.6 矩阵的初等变换

2.6.1 矩阵等价的条件
  1. 同型矩阵
  2. 秩相同(初等行和初等列变换以后)
2.6.2 初等矩阵的性质
  • 对n阶矩阵A进行初等行变换,相当于矩阵A左乘相应的初等矩阵,
  • 对n阶矩阵A进行初等列变换,相当于矩阵A右乘相应的初等矩阵。

来个例题:

2.6.3 初等矩阵的逆、转置和伴随

来个例题1:

例题2

2.6.4 可逆矩阵方程

来例题:

在来个例题:


第三章 矩阵的秩

3.1 引出矩阵方程的秩:

如下方程用矩阵表示的:

  1. 系数矩阵的列表示表示什么?
  2. 矩阵的行表示什么?
  3. 那么矩阵的有效个数是什么呢?

  1. 系数矩阵的列表示表示未知数的个数。
  2. 矩阵的行表示总方程个数。
  3. 那么矩阵的有效个数是什么呢?排除混子就是,也就是矩阵的秩。

3.2 矩阵秩的定义


3.3 矩阵秩的性质


3.4 矩阵秩的结论

3.4.1 秩的结论1

3.4.2 秩的结论2

3.4.3 秩的结论3

3.4.4 秩的结论4

3.4.5 秩的结论5

3.4.6 秩的结论6

3.5 矩阵秩的例题


第四章 向量组

4.1 向量的定义

4.2 线性表示

4.3 向量组等价

4.3.1 向量组等价定义:

4.3.2 矩阵等价和向量组等价
  • 矩阵等价:同型矩阵,秩相等。
  • 向量组等价:可以相互表示即(几何:可以决定同一个空间):R(A,B) = R(A) = R(B)
  • 注意:向量组等价是同一个空间,而不是相同的秩,相同的秩,只能说明相同的维度,但不一定在同一个空间。

4.3.3 向量等价的推论

4.4 线性相关性

4.4.1 线性相关性定义
  1. 线性相关:可以有线性表示就是线性相关,不可以线性表示就是线性无关,即有无混子。
  2. 齐次方程组有非零解,说明解向量中有混子,这个混子可以被其他向量表示,也线性相关。

4.4.2 线性相关与秩的关系
  • 向量的秩小于向量的个数:向量空间的理解:m个向量决定了空间的维度,但是达不到m,说明有混子向量,如果都是骨干向量的话,m个向量就决定了m维度。

4.4.3 线性相关的例题

4.4.4 关于线性相关的定义

4.5. 极大无关组

  • 行变不改变列向量组内的线性表示关系

4.6. 向量组的秩

第五章 线性方程组

5.1 方程的解的判定

5.1.1 齐次方程的解的判定

5.1.2 非齐次方程的解的判定

5.2 方程组求解的例题

5.3 基础解系

5.4 解的结构

5.5 求通解的步骤

第六章 特征值和特征向量

6.1 特征值和特征向量的定义

一个矩阵的乘以一个向量 == 一个数乘以一个向量
理解:

例题1:

例题2:

6.2 特征值的性质

6.3 特征向量的性质

  • 不同的特征值对应的特征向量是线性无关的。

例题:

例题:

第七章 相识对角化

7.1 相似矩阵的定义

7.2 相似矩阵的性质

7.3 相似对角化

所以:所有拉姆达线性无关的话:

4、相似对角化的性质

4.1 例题1

7.4 相似对角化的性质

例题1

思考的问题:

例题2

7.5 秩为一的矩阵

7.6 合同最小化

7.6.1 实对称矩阵的性质

7.6.2 例题

 第八章 二次型

8.1. 合同对角化与正交变换法的步骤:

  1. 二次型矩阵的特点:一定是对称矩阵,对角线是平方项。
  2. 标准型和规范型
    标准型:系数不一定为1,
    规范型,系数为1或-1。
  3. 正交变换为标准型的系数:一定是特征值。
  4. 判断两个矩阵是否合同:主要看他们的正负惯性指数一样,也就是系数正负是否一样,也就是特征值的正负是否一样。
  5. 正定矩阵的条件:
    1. 必须是对称矩阵
    2. 方程系数都为正,或者二次矩阵的特征值都为正。
  6. 判别正定矩阵A:
    1. A是实对称矩阵
    2. 所有顺序主子式均>0
    3. 主对角元素都大于0;
    4. A中最大的数落在主对角线上
  7. 对称矩阵A为负定的充分必要条件是:
    1. 奇数阶主子式为负,而偶数阶主子式为正。

本章完。

这篇关于【考研数学二】线性代数重点笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/847514

相关文章

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

数学建模笔记—— 非线性规划

数学建模笔记—— 非线性规划 非线性规划1. 模型原理1.1 非线性规划的标准型1.2 非线性规划求解的Matlab函数 2. 典型例题3. matlab代码求解3.1 例1 一个简单示例3.2 例2 选址问题1. 第一问 线性规划2. 第二问 非线性规划 非线性规划 非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。2

【C++学习笔记 20】C++中的智能指针

智能指针的功能 在上一篇笔记提到了在栈和堆上创建变量的区别,使用new关键字创建变量时,需要搭配delete关键字销毁变量。而智能指针的作用就是调用new分配内存时,不必自己去调用delete,甚至不用调用new。 智能指针实际上就是对原始指针的包装。 unique_ptr 最简单的智能指针,是一种作用域指针,意思是当指针超出该作用域时,会自动调用delete。它名为unique的原因是这个

查看提交历史 —— Git 学习笔记 11

查看提交历史 查看提交历史 不带任何选项的git log-p选项--stat 选项--pretty=oneline选项--pretty=format选项git log常用选项列表参考资料 在提交了若干更新,又或者克隆了某个项目之后,你也许想回顾下提交历史。 完成这个任务最简单而又有效的 工具是 git log 命令。 接下来的例子会用一个用于演示的 simplegit

记录每次更新到仓库 —— Git 学习笔记 10

记录每次更新到仓库 文章目录 文件的状态三个区域检查当前文件状态跟踪新文件取消跟踪(un-tracking)文件重新跟踪(re-tracking)文件暂存已修改文件忽略某些文件查看已暂存和未暂存的修改提交更新跳过暂存区删除文件移动文件参考资料 咱们接着很多天以前的 取得Git仓库 这篇文章继续说。 文件的状态 不管是通过哪种方法,现在我们已经有了一个仓库,并从这个仓

忽略某些文件 —— Git 学习笔记 05

忽略某些文件 忽略某些文件 通过.gitignore文件其他规则源如何选择规则源参考资料 对于某些文件,我们不希望把它们纳入 Git 的管理,也不希望它们总出现在未跟踪文件列表。通常它们都是些自动生成的文件,比如日志文件、编译过程中创建的临时文件等。 通过.gitignore文件 假设我们要忽略 lib.a 文件,那我们可以在 lib.a 所在目录下创建一个名为 .gi

取得 Git 仓库 —— Git 学习笔记 04

取得 Git 仓库 —— Git 学习笔记 04 我认为, Git 的学习分为两大块:一是工作区、索引、本地版本库之间的交互;二是本地版本库和远程版本库之间的交互。第一块是基础,第二块是难点。 下面,我们就围绕着第一部分内容来学习,先不考虑远程仓库,只考虑本地仓库。 怎样取得项目的 Git 仓库? 有两种取得 Git 项目仓库的方法。第一种是在本地创建一个新的仓库,第二种是把其他地方的某个