性能测试百分百会问到且难度极高的面试题分享给大家,面试了16家公司,都有被问到!

本文主要是介绍性能测试百分百会问到且难度极高的面试题分享给大家,面试了16家公司,都有被问到!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

今天给大家分享一波面试中经常被问到性能指标,希望能帮助大家,建议收藏~

1、吞吐量

单位时间内,系统能够处理多少请求,吞吐量代表网络的流量,TPS越高,吞吐量越大,还包含了数据的吞吐量。一般单位为秒,每秒处理的请求量。

注意:我们看到的JMeter聚合报告一般如下图,下表中的吞吐量实际是我们文中说的TPS或者QPS。如果要计算吞吐量的话应该是接收+发送网络流量总和。

性能测试的时候关注吞吐量和测试环境网络带宽之间的关系,如果吞吐量接近或者等于测试环境带宽极限,那么很可能存在网络瓶颈。

2、TPS

TPS的全称是Transaction Per Second,即每秒处理的事务数,那什么是事务呢?

如:用户操作伴随着数据的变更,【下单---->支付——一个请求会有多个操作】;如:11.11用淘宝下单,产生订单数据【40W订单/每秒】。

衡量一个系统性能的好坏,主要看的是单位时间内,系统可以处理多少业务量。

举个电商的例子:

1)假设要测试“下单”,那么“下单”业务就可看做是一个事务;

2)假设需要测试“添加购物车+下单”整体业务,那么“添加购物车”和“下单”这2个业务就组成了一个事务,此时TPS就是每秒处理“添加购物车+下单”这个一整个事务的数量。

响应时间单位为秒的情况下,TPS = 1/响应时间*并发数。

  • 一般情况下采用二八原则去计算,80%的交易发生在20%的时间去处理。如:一天10000笔,TPS = (10000* 80%=8000笔)/(24*60*60*20%)。
  • 10000笔交易,上午2小时,下午2个小时,TPS = 10000*/4*60*60。

在系统达到瓶颈之前,TPS和并发数成正比关系。

3、QPS

QPS = 并发数/响应时间,QPS的全称叫Request Per Second。字面意思比较好理解,就是每秒处理的请求数(如:用户查询数据【打开某个页面】,打开淘宝某个商品页面的时候),并没有去做数据的修改,只是把数据加载到页面中。

如果是测试单接口的情况下,TPS=QPS,例如上面电商例子中的第1)个场景。

4、TOP响应时间

响应时间,Rsponse Time,从用户的角度来讲,就是用起来快不快。

一个请求从用户发起,到收到服务器响应,所需的时间:

  • 页面打开响应的时间;
  • 具体单个资源的响应时间。

一个请求的响应时间由以下几部分时间构成,响应时间=网络传输的总时间+各组件业务处理时间。

TOP响应时间是将所有请求的响应时间先从大到小进行排序,计算指定比例的请求都是小于某个时间。

该指标统计的是大多数请求的耗时,用JMeter进行测试通常看到下面几个数据:

  • Top90(90%响应时间):90%的请求耗时都低于某个响应时间;
  • Top95(95%响应时间):95%的请求耗时都低于某个响应时间;
  • Top99(99%响应时间):99%的请求耗时都低于某个响应时间;

5、平均响应时间

平均响应时间=所有请求的平均耗时=ART(Average Response Time)。

6、并发数/虚拟用户数

即并发处理能力,压测工具中设置的并发线程/进程数量,海量用户使用系统,在系统不崩溃情况下,能够支撑多少人同时使用。可以理解为每秒/毫秒可以处理多少并发。

7、资源占用率

2个App,功能都一样,都是用来做“图片美颜”,我们来判断下,哪个App的性能好。

  • 第一个App能够运行在5年前的手机上,2GB运行内存,需要内存资源少。
  • 第二个App只能够运行在3年前的手机上,4GB运行内存,需要内存资源更多。

我们可以看出,第一个App所需要的运行内存更小,占用的内存资源更少,而第二个App需要的运行内存是更大的,以及内存资源更多,只能在三年的手机运行,5年前的是运行不了,所以是第一个App相对于与第二个App来说,第一个App性能是更加好的。

性能好一些,对我们实际有什么帮助呢?

假设我们在开发一款应用,有1000使用用户:

  • 500w用户——3年内的新手机(运行内存4G)
  • 500w用户——5年前的老手机(运行内存2G)

如我们开发时没有考虑到老手机运行内存的问题,只可以运行在新手机上,那就意味着50%,500w的老手机的用户是正常使用不了的,如我们所设计时考虑到了,性能足够的好,新、老手机都可使用,那就是100%的用户是都可以正常使用的。

8、成功率

请求的成功率,一般执行压测后我们会关注请求或者事务的成功率是多少,一般公司可能要求成功率在99.99%以上。

9、PV/UV

  • PV(Page View)页面/接口的访问量;
  • UV(Unique Visitor)页面/接口的每日唯一访客。

PV/UV的概念好像也是常在电商中出现,一般可能是在性能需求分析的时候提到,比如某页面每日的PV是多少,UV是多少。

作为一个软件测试的过来人,我想尽自己最大的努力,帮助每一个伙伴都能顺利找到工作。所以我整理了下面这份资源,现在免费分享给大家,有需要的小伙伴可以关注【公众号:开心螺蛳粉】自提!

软件测试面试文档

我们学习必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有字节大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。在这里插入图片描述

在这里插入图片描述

行动吧,在路上总比一直观望的要好,未来的你肯定会感谢现在拼搏的自己!如果想学习提升找不到资料,没人答疑解惑时,请及时加入群:1150305204,里面有各种测试开发资料和技术可以一起交流哦。

这篇关于性能测试百分百会问到且难度极高的面试题分享给大家,面试了16家公司,都有被问到!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/847187

相关文章

Linux系统性能检测命令详解

《Linux系统性能检测命令详解》本文介绍了Linux系统常用的监控命令(如top、vmstat、iostat、htop等)及其参数功能,涵盖进程状态、内存使用、磁盘I/O、系统负载等多维度资源监控,... 目录toppsuptimevmstatIOStatiotopslabtophtopdstatnmon

Python中你不知道的gzip高级用法分享

《Python中你不知道的gzip高级用法分享》在当今大数据时代,数据存储和传输成本已成为每个开发者必须考虑的问题,Python内置的gzip模块提供了一种简单高效的解决方案,下面小编就来和大家详细讲... 目录前言:为什么数据压缩如此重要1. gzip 模块基础介绍2. 基本压缩与解压缩操作2.1 压缩文

Go语言代码格式化的技巧分享

《Go语言代码格式化的技巧分享》在Go语言的开发过程中,代码格式化是一个看似细微却至关重要的环节,良好的代码格式化不仅能提升代码的可读性,还能促进团队协作,减少因代码风格差异引发的问题,Go在代码格式... 目录一、Go 语言代码格式化的重要性二、Go 语言代码格式化工具:gofmt 与 go fmt(一)

使用Python进行GRPC和Dubbo协议的高级测试

《使用Python进行GRPC和Dubbo协议的高级测试》GRPC(GoogleRemoteProcedureCall)是一种高性能、开源的远程过程调用(RPC)框架,Dubbo是一种高性能的分布式服... 目录01 GRPC测试安装gRPC编写.proto文件实现服务02 Dubbo测试1. 安装Dubb

Python的端到端测试框架SeleniumBase使用解读

《Python的端到端测试框架SeleniumBase使用解读》:本文主要介绍Python的端到端测试框架SeleniumBase使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全... 目录SeleniumBase详细介绍及用法指南什么是 SeleniumBase?SeleniumBase

Python虚拟环境与Conda使用指南分享

《Python虚拟环境与Conda使用指南分享》:本文主要介绍Python虚拟环境与Conda使用指南,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、python 虚拟环境概述1.1 什么是虚拟环境1.2 为什么需要虚拟环境二、Python 内置的虚拟环境工具

JVisualVM之Java性能监控与调优利器详解

《JVisualVM之Java性能监控与调优利器详解》本文将详细介绍JVisualVM的使用方法,并结合实际案例展示如何利用它进行性能调优,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全... 目录1. JVisualVM简介2. JVisualVM的安装与启动2.1 启动JVisualVM2

Java使用MethodHandle来替代反射,提高性能问题

《Java使用MethodHandle来替代反射,提高性能问题》:本文主要介绍Java使用MethodHandle来替代反射,提高性能问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录一、认识MethodHandle1、简介2、使用方式3、与反射的区别二、示例1、基本使用2、(重要)

python多线程并发测试过程

《python多线程并发测试过程》:本文主要介绍python多线程并发测试过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、并发与并行?二、同步与异步的概念?三、线程与进程的区别?需求1:多线程执行不同任务需求2:多线程执行相同任务总结一、并发与并行?1、

Python处理大量Excel文件的十个技巧分享

《Python处理大量Excel文件的十个技巧分享》每天被大量Excel文件折磨的你看过来!这是一份Python程序员整理的实用技巧,不说废话,直接上干货,文章通过代码示例讲解的非常详细,需要的朋友可... 目录一、批量读取多个Excel文件二、选择性读取工作表和列三、自动调整格式和样式四、智能数据清洗五、