背景减除(1)--bgslibrary Windows编译和使用

2024-03-25 23:52

本文主要是介绍背景减除(1)--bgslibrary Windows编译和使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

入侵监控领域中,在固定场景下,需要检测和监控的入侵物体种类繁多,无法具体穷尽。传统的CV算法提取的特征应用场景有限,无法完成大量物体的监控;深度学习目标检测方法没法收集到无穷无尽的物体种类,因此监督效果仅限于编著物体,且适应性因场景变化而变化;异常检测方案,因为场景随着天气、光照的变化,无法行之有效的判断出异常物体的位置,并有时甚至出现误判断。

背景减除算法,通过学习固定场景下不变的背景,利用当前帧的的数据与背景的差分,可以很容易得到前景,在无需分类的场景下得到广泛应用。

这里推荐一个宝藏github主的分享,对于学习背景建模相关的东西很有帮助。https://github.com/murari023/awesome-background-subtraction/blob/master/README.md#projects

GitHub - andrewssobral/bgslibrary: A C++ Background Subtraction Library with wrappers for Python, MATLAB, Java and GUI on QT

一、bgslibrary库的下载

使用背景建模基本都会使用到两个库,一个是opencv里面关于background subtraction相关的库,另一个就是bgslibrary,其链接地址如下: 

https://github.com/andrewssobral/bgslibrary 

该库是由Andrews Sobral 于2012年开始编写的,主要使用C++语言,结合opencv进行编写完成,当前还适配python、java、matlab等语言。最新release的算法版本总计实现了43个算法,针对不同版本的opencv,所能适配的和使用的背景建模算法均不一致,下图为部分示例。

 可以通过上述github链接直接下载bgslibrary,然后解压到自己的盘符中存放

二、bgslibrary库的编译

编译的具体步骤可以参考如下链接:https://github.com/andrewssobral/bgslibrary/wiki/Installation-instructions---Windows

首先打开cmd,确认电脑已经安装cmake相关的软件。

解压已经下载到本地的bgslibrary库,然后cd进入bgslibrary

 进入C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Auxiliary\Build,并点击运行vcvars64.bat文件,需要管理员权限才能正常运行

 设置opencv库的安装目录:

切换到编译目录bgslibrary/build下;

调用cmake命令进行安装编译,编译命令如下所示:

cmake -DOpenCV_DIR="D:\personal\personal\opencv\build" -G "Visual Studio 16 2019" ..

配置成功出现如下所示显示结果。

最后使用visual studio 2019 打开稀土中的sln文件,选择你需要的编译库的类型(例如X64+debug或者X64+release),直接点击build编译即可。编译完成后可以在build文件夹中生成bgslibrary_core.lib以及bgslibrary_core.dll文件。

三、bgslibrary库的使用

首先,新建一个工程,取一个工程名称,将bgslibrary库下面的src文件夹拷贝到本工程目录下,将编译生成的lib以及dll拷贝到本工程下的lib文件以及工程下,具体如下图所示。

接着,在包含目录中配置opencv和bgs库的头文件目录,库目录中包含opencv和bgs库的库目录所在位置,如下所示:

在链接器中增加opencv_world470d.lib以及bgslibrary_core.lib

新建一个main.cpp,加入如下代码:

 

#include <iostream>
#include <algorithm>
#include <iterator>
#include <string>
#include <vector>
#include <opencv2/opencv.hpp>
#include"../src/algorithms/algorithms.h"auto algorithmsName = BGS_Factory::Instance()->GetRegisteredAlgorithmsName();int main() {std::cout << "Using OpenCV " << CV_MAJOR_VERSION << "." << CV_MINOR_VERSION << "." << CV_SUBMINOR_VERSION << std::endl;std::cout << "Number of available algorithms: " << algorithmsName.size() << std::endl;std::cout << "List of available algorithms:" << std::endl;std::copy(algorithmsName.begin(), algorithmsName.end(), std::ostream_iterator<std::string>(std::cout, "\n"));/*List of all algorithms:(Note that some of these algorithms are available only for a specific version of OpenCV, see algorithms.h)AdaptiveBackgroundLearning,AdaptiveSelectiveBackgroundLearning,CodeBook,DPAdaptiveMedian,DPEigenbackground,DPGrimsonGMM,DPMean,DPPratiMediod,DPTexture,DPWrenGA,DPZivkovicAGMM,FrameDifference,FuzzyChoquetIntegral,FuzzySugenoIntegral,GMG,IndependentMultimodal,KDE,KNN,LBAdaptiveSOM,LBFuzzyAdaptiveSOM,LBFuzzyGaussian,LBMixtureOfGaussians,LBP_MRF,LBSimpleGaussian,LOBSTER,MixtureOfGaussianV2,MixtureOfGaussianV1,MultiCue,MultiLayer,PAWCS,PixelBasedAdaptiveSegmenter,SigmaDelta,StaticFrameDifference,SuBSENSE,T2FGMM_UM,T2FGMM_UV,T2FMRF_UM,T2FMRF_UV,TwoPoints,ViBe,VuMeter,WeightedMovingMean,WeightedMovingVariance*/std::string algorithmName = "KNN";//int cameraIndex = 0;//if (argc > 1) algorithmName = argv[1];//if (argc > 2) cameraIndex = std::stoi(argv[2]);std::string video_path = "./00010000684000000_4.mp4";cv::VideoCapture capture;capture.open(video_path);if (!capture.isOpened()) {std::cerr << "Cannot initialize web camera!" << std::endl;return -1;}std::cout << "Running " << algorithmName << std::endl;auto bgs = BGS_Factory::Instance()->Create(algorithmName);cv::Mat img_input;auto key = 0;std::cout << "Press 's' to stop:" << std::endl;while (key != 's') {// Capture frame-by-framecapture >> img_input;if (img_input.empty()) break;// Resize input frame for better visualizationcv::resize(img_input, img_input, cv::Size(380, 240), 0, 0, CV_INTER_LINEAR);cv::imshow("input", img_input);cv::Mat img_mask;cv::Mat img_bkgmodel;try {// by default, bgs->process(...) shows automatically the foreground mask image// or you can disable it by: bgs->setShowOutput(false);bgs->process(img_input, img_mask, img_bkgmodel);if(!img_mask.empty())cv::imshow("Foreground", img_mask);//  ....do something else...}catch (std::exception& e) {std::cout << "Exception occurred" << std::endl;std::cout << e.what() << std::endl;}key = cv::waitKey(33);}cv::destroyAllWindows();capture.release();return 0;}

运行本程序,可以看到结果如下所示:

---------------------------------------------------END----------------------------------------------------- 

这篇关于背景减除(1)--bgslibrary Windows编译和使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/846669

相关文章

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Pandas使用AdaBoost进行分类的实现

《Pandas使用AdaBoost进行分类的实现》Pandas和AdaBoost分类算法,可以高效地进行数据预处理和分类任务,本文主要介绍了Pandas使用AdaBoost进行分类的实现,具有一定的参... 目录什么是 AdaBoost?使用 AdaBoost 的步骤安装必要的库步骤一:数据准备步骤二:模型

使用Pandas进行均值填充的实现

《使用Pandas进行均值填充的实现》缺失数据(NaN值)是一个常见的问题,我们可以通过多种方法来处理缺失数据,其中一种常用的方法是均值填充,本文主要介绍了使用Pandas进行均值填充的实现,感兴趣的... 目录什么是均值填充?为什么选择均值填充?均值填充的步骤实际代码示例总结在数据分析和处理过程中,缺失数

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

解决Maven项目idea找不到本地仓库jar包问题以及使用mvn install:install-file

《解决Maven项目idea找不到本地仓库jar包问题以及使用mvninstall:install-file》:本文主要介绍解决Maven项目idea找不到本地仓库jar包问题以及使用mvnin... 目录Maven项目idea找不到本地仓库jar包以及使用mvn install:install-file基

Windows 上如果忘记了 MySQL 密码 重置密码的两种方法

《Windows上如果忘记了MySQL密码重置密码的两种方法》:本文主要介绍Windows上如果忘记了MySQL密码重置密码的两种方法,本文通过两种方法结合实例代码给大家介绍的非常详细,感... 目录方法 1:以跳过权限验证模式启动 mysql 并重置密码方法 2:使用 my.ini 文件的临时配置在 Wi

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

C 语言中enum枚举的定义和使用小结

《C语言中enum枚举的定义和使用小结》在C语言里,enum(枚举)是一种用户自定义的数据类型,它能够让你创建一组具名的整数常量,下面我会从定义、使用、特性等方面详细介绍enum,感兴趣的朋友一起看... 目录1、引言2、基本定义3、定义枚举变量4、自定义枚举常量的值5、枚举与switch语句结合使用6、枚

使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)

《使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)》PPT是一种高效的信息展示工具,广泛应用于教育、商务和设计等多个领域,PPT文档中常常包含丰富的图片内容,这些图片不仅提升了... 目录一、引言二、环境与工具三、python 提取PPT背景图片3.1 提取幻灯片背景图片3.2 提取

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB