学习次模函数-第1章 引言

2024-03-25 19:12
文章标签 函数 学习 引言 次模

本文主要是介绍学习次模函数-第1章 引言,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

许多组合优化问题可以被转换为集合函数的最小化,集合函数是在给定基集合V的子集的集合上定义的函数。同样地,它们可以被定义为超立方体的顶点上的函数,即\left \{ 0,1 \right \}^p,其中p是基集合V的基数-它们通常被称为伪布尔函数[27]。在这些集合函数中,次模函数起着重要的作用,类似于向量空间上的凸函数,因为在实际问题中出现的许多函数都是次模函数或其轻微的修改的,在计算机科学和应用数学的许多领域中有应用,例如机器学习[125,157,117,124],计算机视觉[31,96],运筹学[98,182],电气网络[162]或经济学[203]。由于次模函数可以精确最小化,并且在某些保证下近似地最大化,因此在多项式时间内,它们很容易为它们所应用的所有众多问题带来有效的算法。它们也出现在理论计算机的几个领域中科学,如拟阵理论[189]。

然而,对次模函数的兴趣并不限于离散优化问题。 事实上,次模函数的丰富结构及其通过Lovász扩展与凸分析的联系[135]和各种相关的多面体使它们特别适用于组合优化之外的问题,即作为信号处理和机器学习问题中的正则化器[38,7]。

实际上,许多连续优化问题表现出潜在的离散结构(例如, 基于链、树或更一般的图)和次模函数提供了有效和通用的工具来捕获这样的组合结构。

在这本专著中,次模函数的理论以一种独立的方式呈现,所有结果都是从机器学习中常见的凸分析的第一原理证明的,而不是依赖于组合优化和传统的理论计算机科学概念,如拟阵或流(见,例如, [72]有关这些方法的参考书)。 此外,我们提出的算法是基于传统的凸优化算法,如单纯形法线性规划,二次规划的有效集方法,椭球方法,切割平面,和条件梯度。 这些将详细介绍,特别是在次模函数最小化及其各种连续扩展的背景下。 假设具有良好的凸分析知识(见,例如, [30,28]),并在附录A中对重要概念进行了简短的回顾-更多详细信息,请见,例如, [95,第30、28、185页]。

各章大纲。分为几个章节,总结如下(在目录中,第一次阅读时可以跳过的章节用星星标记):

(1)定义:在第二章中,我们给予了次模函数及其相关多面体的不同定义,特别是基多面体和次模多面体,它们在次模分析中是至关重要的,因为许多算法和模型都可以用这些多面体自然地表示。

(2)Lovász扩展:在第三章中,我们将Lovász扩展定义为从定义在\left \{ 0,1 \right \}^p上的函数到定义在[0,1]^p上的函数的扩展(然后是\mathbb{R}^p),并给予它的主要性质,特别是给出了次模分析中的关键结果:Lovász扩展是凸的当且仅当集函数是次模的;此外,最小化次模集函数F等价于最小化[0,1]^p上的Lovász扩展。这意味着次模函数最小化可以在多项式时间内解决。最后,通过所谓的“贪婪算法”建立了Lovász扩展和次模多面体之间的联系:Lovász扩展是基多面体的支撑函数,并且可以以封闭形式计算。

(3)多面体:第四章将进一步研究伴随多面体,计算线性函数的支撑函数和伴随极大化子,我们还详细讨论了这种多面体的面结构,这在第五章中与Lovász扩展的稀疏诱导性质相关时将很有用。

(4)次模罚函数的凸松弛:虽然次模函数可以直接使用(用于集函数的最小化或最大化),但我们在第5章中展示了如何使用它们来惩罚向量的支撑集或水平集,由此产生的混合组合/连续优化问题可以使用Lovász扩展自然地松弛为凸优化问题。

(5)示例如下:在第6章中,我们介绍了次模函数的经典例子,以及在机器学习中的几个应用,特别是割,集合覆盖,网络流,熵,谱函数和拟阵。

(6)非光滑凸优化:在第七章中,我们回顾了经典的迭代算法,如次梯度法、椭球法、单纯法、割平面法、有效集法和条件梯度法,并特别注意在适用的情况下提供这些算法的原始/对偶解释。

(7)可分离优化-分析:在第八章中,我们考虑了由Lovász扩展w \mapsto f(w)正则化的可分优化问题,即形式为min_{w\in \mathbb{R}^p}{\sum_{k\in V}\psi _k(w_k)+f(w)}的问题,并证明了这如何等价于一系列次模函数极小化问题。这是与次模函数相关的组合优化问题和凸优化问题之间的关键理论联系,这将在后面的章节中使用。

(8)可分离优化-算法:在第9章中,我们提出了两套可分离优化问题的算法。 第一个算法是一个精确的算法,它依赖于一个有效的次模函数最小化算法的可用性,而第二组算法是基于现有的凸优化迭代算法,其中一些来与在线和离线的理论保证。 我们考虑有效集方法(“最小范数”算法)和条件梯度方法。

(9)次模函数最小化:在第10章中,我们介绍了各种次模函数最小化的方法。 我们简要介绍了精确次模函数最小化的组合算法,并专注于更深入地使用特定的凸优化问题,可以迭代求解,以获得近似或精确解次模函数最小化,有时理论保证和近似最优性证书。 我们考虑了次梯度法,椭球法,单纯形算法和解析中心割平面。 我们还展示了第8章和第9章中的可分离优化问题如何用于次模函数最小化。 第12章将对这些方法进行实证比较。

(10)次模块优化问题:在第11章中,我们提出了其他组合优化问题,可以部分解决使用次模分析,如次模函数最大化和次模函数的差异的优化,并将这些问题与非凸优化问题的次模多面体。 虽然这些问题通常不能在多项式时间内解决,但许多算法都具有基于次模性的近似保证。

(11)实验:在第12章中,我们提供了前面描述的优化算法的例子,用于次模函数最小化,以及凸优化问题(可分或不可分)。 所有这些实验的Matlab代码可以在http://www.di.ens.fr/~fbach/submodular/上找到。

在附录A中,我们回顾了凸分析的相关概念(如Fenchel对偶、对偶范数、规范函数和极集),而在附录B中,我们给出了与次模函数相关的几个结果,如保持次模性的运算。

已经有几本关于同一主题的书籍和专著文章,本专著中提供的材料依赖于这些[72,162,126]。 然而,为了以最简单的方式呈现材料,也使用了相关研究论文的思想,并更加强调凸分析和优化。

符号。 我们考虑集合V=\{1,2,3,\cdots,p \},其幂集为2^V,由V2^p个子集组成。 给定一个向量s\in{\mathbb{R}^p}s也表示定义为s(A)=\sum_{k\in A}s_k的模集函数。此外,A\subseteq B意味着AB的子集,可能等于B。 我们表示为\left | A \right |集合A的基数,并且,对于A\subseteq V=\{1,2,3,\cdots,p\}1_A\in \mathbb{R}^p表示集合A的指示向量。 若w\in \mathbb{R}^p,\alpha\in \mathbb{R},则\{w\geqslant \alpha\}表示V=\{1,2,3,\cdots,p\}定义为\{k\in V,w_k\geqslant \alpha\},我们称之为弱(或强)\alpha-超水平集。 类似地,如果v\in\mathbb{R}^p,我们记为\{w\geq v\}=\{k\in V,w_k\geqslant v_k\}

对于q\in{[1,\infty]},我们用\left \| w \right \|_q表示wq-范数,定义为\left \| w \right \|_q=(\sum_{k\in V}{\left | w_k \right |^q})^{1/q},其中q\in{[1,\infty)}\left \| w \right \|_\infty=max_{k\in V}\left | w_k \right |。最后,我们用\mathbb{R}_+表示非负实数集,用\mathbb{R}^*表示非零实数集,用\mathbb{R}_+^*表示严格正实数集。

这篇关于学习次模函数-第1章 引言的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/845979

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

hdu1171(母函数或多重背包)

题意:把物品分成两份,使得价值最接近 可以用背包,或者是母函数来解,母函数(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v) 其中指数为价值,每一项的数目为(该物品数+1)个 代码如下: #include<iostream>#include<algorithm>

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个