LangGraph 入门与实战

2024-03-25 19:04
文章标签 实战 入门 langgraph

本文主要是介绍LangGraph 入门与实战,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原文:LangGraph 入门与实战 - 知乎

参考:langgraph/examples at main · langchain-ai/langgraph · GitHub

大家好,我是雨飞。LangGraph 是在 LangChain 基础上的一个库,是 LangChain 的 LangChain Expression Language (LCEL)的扩展。能够利用有向无环图的方式,去协调多个LLM或者状态,使用起来比 LCEL 会复杂,但是逻辑会更清晰。

相当于一种高级的LCEL语言,值得一试。

安装也十分简单。注意,这个库需要自己去安装,默认的LangChain不会安装这个库。

pip install langgraph

由于,OpenAI访问不方便,我们统一使用智普AI的大模型进行下面的实践。

智普AI的接口和OpenAI的比较类似,因此也可以使用OpenAI的tools的接口,目前还没有发现第二家如此方便的接口。实际使用起来,还是比较丝滑的,虽然有一些小问题。

我们下面以ToolAgent的思想,利用LangGraph去实现一个可以调用工具的Agent。

定义工具以及LLM

工具的定义,可以参考这篇文章,写的比较详细了,比较方便的就是使用 tools 这个注解。

雨飞:使用智普清言的Tools功能实现ToolAgent

定义Agent的状态

LangGraph 中最基础的类型是 StatefulGraph,这种图就会在每一个Node之间传递不同的状态信息。然后每一个节点会根据自己定义的逻辑去更新这个状态信息。具体来说,可以继承 TypeDict 这个类去定义状态,下图我们就定义了有四个变量的信息。

input:这是输入字符串,代表用户的主要请求。

chat_history: 这是之前的对话信息,也作为输入信息传入.

agent_outcome: 这是来自代理的响应,可以是 AgentAction,也可以是 AgentFinish。如果是 AgentFinish,AgentExecutor 就应该结束,否则就应该调用请求的工具。

intermediate_steps: 这是代理在一段时间内采取的行动和相应观察结果的列表。每次迭代都会更新。

class AgentState(TypedDict):# The input stringinput: str# The list of previous messages in the conversationchat_history: list[BaseMessage]# The outcome of a given call to the agent# Needs `None` as a valid type, since this is what this will start asagent_outcome: Union[AgentAction, AgentFinish, None]# List of actions and corresponding observations# Here we annotate this with `operator.add` to indicate that operations to# this state should be ADDED to the existing values (not overwrite it)intermediate_steps: Annotated[list[tuple[AgentAction, str]], operator.add]

定义图中的节点

在LangGraph中,节点一般是一个函数或者langchain中runnable的一种类。

我们这里定义两个节点,agent和tool节点,其中agent节点就是决定执行什么样的行动,

tool节点就是当agent节点选择执行某个行动时,去调用相应的工具。

此外,还需要定义节点之间的连接,也就是边。

条件判断的边:定义图的走向,比如Agent要采取行动时,就需要接下来调用tools,如果Agent说当前的的任务已经完成了,则结束整个流程。

普通的边:调用工具后,始终需要返回到Agent,让Agent决定下一步的行动

from langchain_core.agents import AgentFinish
from langgraph.prebuilt.tool_executor import ToolExecutor# This a helper class we have that is useful for running tools
# It takes in an agent action and calls that tool and returns the result
tool_executor = ToolExecutor(tools)# Define the agent
def run_agent(data):agent_outcome = agent_runnable.invoke(data)return {"agent_outcome": agent_outcome}# Define the function to execute tools
def execute_tools(data):# Get the most recent agent_outcome - this is the key added in the `agent` aboveagent_action = data["agent_outcome"]print("agent action:{}".format(agent_action))output = tool_executor.invoke(agent_action[-1])return {"intermediate_steps": [(agent_action[-1], str(output))]}# Define logic that will be used to determine which conditional edge to go down
def should_continue(data):# If the agent outcome is an AgentFinish, then we return `exit` string# This will be used when setting up the graph to define the flowif isinstance(data["agent_outcome"], AgentFinish):return "end"# Otherwise, an AgentAction is returned# Here we return `continue` string# This will be used when setting up the graph to define the flowelse:return "continue"

定义图

然后,我们就可以定义整个图了。值得注意的是,条件判断的边和普通的边添加方式是不一样的

最后需要编译整个图,才能正常运行。

# Define a new graph
workflow = StateGraph(AgentState)# Define the two nodes we will cycle between
workflow.add_node("agent", run_agent)
workflow.add_node("action", execute_tools)# Set the entrypoint as `agent`
# This means that this node is the first one called
workflow.set_entry_point("agent")# We now add a conditional edge
workflow.add_conditional_edges(# First, we define the start node. We use `agent`.# This means these are the edges taken after the `agent` node is called."agent",# Next, we pass in the function that will determine which node is called next.should_continue,# Finally we pass in a mapping.# The keys are strings, and the values are other nodes.# END is a special node marking that the graph should finish.# What will happen is we will call `should_continue`, and then the output of that# will be matched against the keys in this mapping.# Based on which one it matches, that node will then be called.{# If `tools`, then we call the tool node."continue": "action",# Otherwise we finish."end": END,},
)# We now add a normal edge from `tools` to `agent`.
# This means that after `tools` is called, `agent` node is called next.
workflow.add_edge("action", "agent")# Finally, we compile it!
# This compiles it into a LangChain Runnable,
# meaning you can use it as you would any other runnable
app = workflow.compile()

总代码

下面是所有的可执行代码,注意,需要将api_key替换为自己的api_key。

# !/usr/bin env python3
# -*- coding: utf-8 -*-
# author: yangyunlong time:2024/2/28
import datetime
import operator
from typing import TypedDict, Annotated, Union, Optional,Type,Listimport requests
from langchain import hub
from langchain.agents import create_openai_tools_agent
from langchain.pydantic_v1 import BaseModel, Field
from langchain.tools import BaseTool, tool
from langchain_core.agents import AgentAction
from langchain_core.agents import AgentFinish
from langchain_core.messages import BaseMessage
from langgraph.graph import END, StateGraph
from langgraph.prebuilt.tool_executor import ToolExecutor
from zhipu_llm import ChatZhipuAIzhipuai_api_key = ""
glm3 = "glm-3-turbo"
glm4 = "glm-4"chat_zhipu = ChatZhipuAI(temperature=0.8,api_key=zhipuai_api_key,model=glm3
)class Tagging(BaseModel):"""分析句子的情感极性,并输出句子对应的语言"""sentiment: str = Field(description="sentiment of text, should be `pos`, `neg`, or `neutral`")language: str = Field(description="language of text (should be ISO 639-1 code)")class Overview(BaseModel):"""Overview of a section of text."""summary: str = Field(description="Provide a concise summary of the content.")language: str = Field(description="Provide the language that the content is written in.")keywords: str = Field(description="Provide keywords related to the content.")@tool("tagging", args_schema=Tagging)
def tagging(s1: str, s2: str):"""分析句子的情感极性,并输出句子对应的语言"""return "The sentiment is {a}, the language is {b}".format(a=s1, b=s2)@tool("overview", args_schema=Overview)
def overview(summary: str, language: str, keywords: str):"""Overview of a section of text."""return "Summary: {a}\nLanguage: {b}\nKeywords: {c}".format(a=summary, b=language, c=keywords)@tool
def get_current_temperature(latitude: float, longitude: float):"""Fetch current temperature for given coordinates."""BASE_URL = "https://api.open-meteo.com/v1/forecast"# Parameters for the requestparams = {'latitude': latitude,'longitude': longitude,'hourly': 'temperature_2m','forecast_days': 1,}# Make the requestresponse = requests.get(BASE_URL, params=params)if response.status_code == 200:results = response.json()else:raise Exception(f"API Request failed with status code: {response.status_code}")current_utc_time = datetime.datetime.utcnow()time_list = [datetime.datetime.fromisoformat(time_str.replace('Z', '+00:00')) for time_str inresults['hourly']['time']]temperature_list = results['hourly']['temperature_2m']closest_time_index = min(range(len(time_list)), key=lambda i: abs(time_list[i] - current_utc_time))current_temperature = temperature_list[closest_time_index]return f'The current temperature is {current_temperature}°C'tools = [tagging, overview, get_current_temperature]
# Get the prompt to use - you can modify this!
prompt = hub.pull("hwchase17/openai-tools-agent")# Construct the OpenAI Functions agent
agent_runnable = create_openai_tools_agent(chat_zhipu, tools, prompt)class AgentState(TypedDict):# The input stringinput: str# The list of previous messages in the conversationchat_history: list[BaseMessage]# The outcome of a given call to the agent# Needs `None` as a valid type, since this is what this will start asagent_outcome: Union[AgentAction, AgentFinish, None]# List of actions and corresponding observations# Here we annotate this with `operator.add` to indicate that operations to# this state should be ADDED to the existing values (not overwrite it)intermediate_steps: Annotated[list[tuple[AgentAction, str]], operator.add]# This a helper class we have that is useful for running tools
# It takes in an agent action and calls that tool and returns the resulttool_executor = ToolExecutor(tools)# Define the agent
def run_agent(data):agent_outcome = agent_runnable.invoke(data)return {"agent_outcome": agent_outcome}# Define the function to execute tools
def execute_tools(data):# Get the most recent agent_outcome - this is the key added in the `agent` aboveagent_action = data["agent_outcome"]print("agent action:{}".format(agent_action))output = tool_executor.invoke(agent_action[-1])return {"intermediate_steps": [(agent_action[-1], str(output))]}# Define logic that will be used to determine which conditional edge to go down
def should_continue(data):# If the agent outcome is an AgentFinish, then we return `exit` string# This will be used when setting up the graph to define the flowif isinstance(data["agent_outcome"], AgentFinish):return "end"# Otherwise, an AgentAction is returned# Here we return `continue` string# This will be used when setting up the graph to define the flowelse:return "continue"# Define a new graph
workflow = StateGraph(AgentState)# Define the two nodes we will cycle between
workflow.add_node("agent", run_agent)
workflow.add_node("action", execute_tools)# Set the entrypoint as `agent`
# This means that this node is the first one called
workflow.set_entry_point("agent")# We now add a conditional edge
workflow.add_conditional_edges(# First, we define the start node. We use `agent`.# This means these are the edges taken after the `agent` node is called."agent",# Next, we pass in the function that will determine which node is called next.should_continue,# Finally we pass in a mapping.# The keys are strings, and the values are other nodes.# END is a special node marking that the graph should finish.# What will happen is we will call `should_continue`, and then the output of that# will be matched against the keys in this mapping.# Based on which one it matches, that node will then be called.{# If `tools`, then we call the tool node."continue": "action",# Otherwise we finish."end": END,},
)# We now add a normal edge from `tools` to `agent`.
# This means that after `tools` is called, `agent` node is called next.
workflow.add_edge("action", "agent")# Finally, we compile it!
# This compiles it into a LangChain Runnable,
# meaning you can use it as you would any other runnable
app = workflow.compile()inputs = {"input": "what is the weather in NewYork", "chat_history": []}
result = app.invoke(inputs)
print(result["agent_outcome"].messages[0].content)

这篇关于LangGraph 入门与实战的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/845955

相关文章

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Pandas使用SQLite3实战

《Pandas使用SQLite3实战》本文主要介绍了Pandas使用SQLite3实战,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1 环境准备2 从 SQLite3VlfrWQzgt 读取数据到 DataFrame基础用法:读

Python实战之屏幕录制功能的实现

《Python实战之屏幕录制功能的实现》屏幕录制,即屏幕捕获,是指将计算机屏幕上的活动记录下来,生成视频文件,本文主要为大家介绍了如何使用Python实现这一功能,希望对大家有所帮助... 目录屏幕录制原理图像捕获音频捕获编码压缩输出保存完整的屏幕录制工具高级功能实时预览增加水印多平台支持屏幕录制原理屏幕

最新Spring Security实战教程之Spring Security安全框架指南

《最新SpringSecurity实战教程之SpringSecurity安全框架指南》SpringSecurity是Spring生态系统中的核心组件,提供认证、授权和防护机制,以保护应用免受各种安... 目录前言什么是Spring Security?同类框架对比Spring Security典型应用场景传统

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

OpenManus本地部署实战亲测有效完全免费(最新推荐)

《OpenManus本地部署实战亲测有效完全免费(最新推荐)》文章介绍了如何在本地部署OpenManus大语言模型,包括环境搭建、LLM编程接口配置和测试步骤,本文给大家讲解的非常详细,感兴趣的朋友一... 目录1.概况2.环境搭建2.1安装miniconda或者anaconda2.2 LLM编程接口配置2

Python FastAPI入门安装使用

《PythonFastAPI入门安装使用》FastAPI是一个现代、快速的PythonWeb框架,用于构建API,它基于Python3.6+的类型提示特性,使得代码更加简洁且易于绶护,这篇文章主要介... 目录第一节:FastAPI入门一、FastAPI框架介绍什么是ASGI服务(WSGI)二、FastAP

基于Canvas的Html5多时区动态时钟实战代码

《基于Canvas的Html5多时区动态时钟实战代码》:本文主要介绍了如何使用Canvas在HTML5上实现一个多时区动态时钟的web展示,通过Canvas的API,可以绘制出6个不同城市的时钟,并且这些时钟可以动态转动,每个时钟上都会标注出对应的24小时制时间,详细内容请阅读本文,希望能对你有所帮助...

Spring AI与DeepSeek实战一之快速打造智能对话应用

《SpringAI与DeepSeek实战一之快速打造智能对话应用》本文详细介绍了如何通过SpringAI框架集成DeepSeek大模型,实现普通对话和流式对话功能,步骤包括申请API-KEY、项目搭... 目录一、概述二、申请DeepSeek的API-KEY三、项目搭建3.1. 开发环境要求3.2. mav