python实现时序平滑算法SG滤波器

2024-03-25 17:44

本文主要是介绍python实现时序平滑算法SG滤波器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🍉CSDN小墨&晓末:https://blog.csdn.net/jd1813346972

   个人介绍: 研一|统计学|干货分享
         擅长Python、Matlab、R等主流编程软件
         累计十余项国家级比赛奖项,参与研究经费10w、40w级横向

文章目录

  • 1 简介
  • 2 数据背景
  • 3 S-G平滑滤波实操
  • 4 完整代码

该篇文章针对火焰光谱数据使用S-G平滑滤波对原始光频信息本身带有的较多的噪声信号的火焰毛刺数据进行处理,减少由于噪声导致的对火焰有效红外光谱特征数据的正确获取结果产生较大的影响,包括模型原理,Python实操及对应的可视化分析和结果解读。

1 简介

  S-G (Savitzky-Goloy)滤波器率由Savizky 、 Golay两人共同提出,该方法在时间序列这一领域中得到了广泛的应用。最小二乘法拟合的原理,是S-G平滑滤波的基础原理,针对需要处理的数据,通过多项式加权拟合方式,同时结合一定长度窗口的大小,最终获取最小均方根误差。陈晋等人通过实验验证指出S-G滤波器参数m、d的推荐的取值范围分别为2至7、2至4,本次演示最终选取C-G滤波器参数m=6,d=3。S-G基本平滑原理如式:

Y ( 2 m + 1 ) × 1 = X ( 2 m + 1 ) × d A d × 1 + E ( 2 m + 1 ) × d Y_{(2m+1)×1}=X_{(2m+1)×d}A_{d×1}+E_{(2m+1)×d} Y(2m+1)×1=X(2m+1)×dAd×1+E(2m+1)×d

  其中: Y Y Y为某一窗口拟合值矩阵; X X X表示变量矩阵; A A A表示多项式拟合系数矩阵; E E E表示残差矩阵;m表示半窗口大小;d-1表示拟合最大次数;N 为窗口大小,其中N值大小符合 N = 2m + 1。

  原理图展示:

  把光谱一段区间的等波长间隔的5个点记为X集合,多项式平滑就是利用在波长点为Xm-2,Xm-1,Xm,Xm+1,Xm+2的数据的多项式拟合值来取代Xm,,然后依次移动,直到把光谱遍历完。

2 数据背景

  本次演示中所用数据均来源于2016年的APMCM竞赛的A题数据(下载地址 ),官网提供的数据文件中包含着3组金属冶炼过程中照片探测器监测得到的光谱信息数据。每组数据文件变量共涉及时间t(间距0.5s)、炉内燃烧气体的累积消耗Q、燃烧气体的累积消耗比p、光学信息的数据(f_1-f_2048、不同频率光强)、开尔文温度t和关键元素碳含量共2053个属性。

  火焰在人的肉眼观察情况下存在有不同的焰火颜色的变化,其根本原因是因为火焰燃烧过程中火焰的光谱情况的变化。因此利用光电探测器采集得到的火焰光谱实验数据呈现渐进式变化过程(见下图)。

  该图像刻画出了第一组实验数据炉内进行转炉炼钢的同时,每间隔0.5s炉内各波长光谱数据强度情况,可以看到在连续监测过程中,每一次监测得到的火焰光谱各波长强度情况存在具较高相似度,存在明显规律性。每一次监测中,波长由低到高总体均呈现“平缓-急剧上升-急剧下降-缓慢上升-缓慢下降”的变化特征,且高峰数据多集中于波长段“f_1200-f_1300”之间。

3 S-G平滑滤波实操

  考虑到若直接利用通过红外光电探测器所收集获取得到的火焰原始红外光谱信息进行炉转终点温度及碳元素含量预测,可能会由于原始光频信息本身带有的较多的噪声信号的火焰毛刺数据,进而会对火焰有效红外光谱特征数据的正确获取结果产生较大的影响,因此,该演示将利用Savitzky-Goloy滤波器技术对光电探测器所获得火焰的红外原始光谱数据进行光谱数据预处理,对其进行平滑操作减少噪声数据带来的影响。下图表示为原始红外光谱数据预处理完成后得到的火焰光谱各波长强度情况。

  通过上图可以看出,与平滑前光谱的数据相比,该图中的显著突出数据明显得到改善,且平滑后并未对光谱波长强度总体分布特征造成影响,为进一步查看观测Savitzky-Goloy平滑滤波器应用于光谱信息上的效果,本实验绘制了第一组前四次监测的火焰光谱数据平滑前后效果,见下图所示。

  通过上图可以看出,平滑前部分毛刺数据经过Savitzky-Goloy滤波后得到很好的处理,特别是对于异常凸起的毛刺数据,认为原始红外光谱数据通过Savitzky-Goloy滤波器技术对噪声数据有着明显的改进效果。

4 完整代码

from matplotlib import pyplot as plt
from scipy.signal import savgol_filter##Savitzky-Golay 平滑
import numpy as np  
import openpyxl 
import pandas as pd##初始绘三维图
df=pd.read_excel('D:\\1 - 副本.xlsx')#读取数据
height,width = df.shape
print(height,width,type(df))#数据大小
##提取光信息特征
data2=df.iloc[:,3:2051]#光学频率:1-2048
from matplotlib import pyplot as plt
%matplotlib inline
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = Axes3D(fig)
x = np.arange(0,2048)
y = np.arange(0,404)
X, Y = np.meshgrid(x, y)
Z = np.array(data2)# 具体函数方法可用 help(function) 查看,如:help(ax.plot_surface)
ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='rainbow')
ax.set_zlim(0, 25000)
ax.set_xlabel('Wavelength/nm')
ax.set_ylabel('Frame')
ax.set_zlabel('Intensity/Cd')
plt.show()
# 设置坐标轴的名称##Savitzky-Golay 平滑
df=pd.read_excel('C:\\3 - 副本.xlsx')#读取数据
height,width = df.shape
print(height,width,type(df))#数据大小
data=df.iloc[:,3:2051]#光学频率:1-2048newans=pd.DataFrame()
for i in range(286):data0=data.loc[i]newans1 = savgol_filter(list(data0), 17, 3, mode= 'nearest')newans2 =pd.DataFrame(newans1).Tnewans=newans.append(newans2)data1 = pd.DataFrame(newans.values, index=data.index, columns=data.columns)##更改行列名data1["t"]=df.iloc[:,0]
data1["Q"]=df.iloc[:,1]
data1["P"]=df.iloc[:,2]
data1["T(K)"]=df.iloc[:,2051]
data1["C"]=df.iloc[:,2052]
data1.to_excel('C:\\平滑后3.xlsx',index=False)##绘制三维图df=pd.read_excel('C:\\平滑后3.xlsx')#读取数据
height,width = df.shape
print(height,width,type(df))#数据大小
##提取光信息特征
data2=df.iloc[:,0:2048]#光学频率:1-2048
from matplotlib import pyplot as plt
%matplotlib inline
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = Axes3D(fig)
x = np.arange(0,2048)
y = np.arange(0,286)
X, Y = np.meshgrid(x, y)
Z = np.array(data2)# 具体函数方法可用 help(function) 查看,如:help(ax.plot_surface)
ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='rainbow')
ax.set_zlim(0, 25000)
# 设置坐标轴的名称
ax.set_xlabel('Wavelength/nm')
ax.set_ylabel('Frame')
ax.set_zlabel('Intensity/Cd')
plt.show()##绘制折线图
df=pd.read_excel('D:\\1 - 副本.xlsx')#读取数据
height,width = df.shape
print(height,width,type(df))#数据大小
##提取光信息特征
data21=df.iloc[0,3:2051]#光学频率:1-2048
data31=df.iloc[1,3:2051]#光学频率:1-2048
data41=df.iloc[2,3:2051]#光学频率:1-2048
data51=df.iloc[3,3:2051]#光学频率:1-2048df1=pd.read_excel('D:\\平滑后1.xlsx')#读取数据
height,width = df.shape
print(height,width,type(df))#数据大小
##提取光信息特征
data22=df1.iloc[0,0:2048]#光学频率:1-2048
data32=df1.iloc[1,0:2048]#光学频率:1-2048
data42=df1.iloc[2,0:2048]#光学频率:1-2048
data52=df1.iloc[3,0:2048]#光学频率:1-2048
# -*- coding: UTF-8 -*-
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt#这里导入你自己的数据
#......
#......
#x_axix,train_pn_dis这些都是长度相同的list()#开始画图
# matplotlib其实是不支持显示中文的 显示中文需要一行代码设置字体  
import matplotlib
import matplotlib.pyplot as plt 
mpl.rcParams['font.family'] = 'SimHei'  
plt.rcParams['axes.unicode_minus'] = False   # 步骤二(解决坐标轴负数的负号显示问题)  
matplotlib.rcParams['xtick.labelsize'] =15#x、y轴刻度值大小
matplotlib.rcParams['ytick.labelsize'] =15
matplotlib.rcParams['axes.labelsize'] = 15#x轴、y轴标签值大小
plt.figure(figsize=(12, 12))plt.subplot(2,2,1)
x=np.arange(1,2049,1)plt.title('第一次监测')
plt.plot(x, data21, color='green',label='平滑前')
plt.plot(x, data22, color='red',label='平滑后')plt.legend() # 显示图例plt.xlabel('Wavelength/nm')
plt.ylabel('Intensity/Cd')#python 一个折线图绘制多个曲线
plt.subplot(2,2,2)
plt.title('第二次监测')
plt.plot(x, data31, color='green', label='平滑前')
plt.plot(x, data32, color='red', label='平滑后')
plt.legend() # 显示图例
plt.xlabel('Wavelength/nm')
plt.ylabel('Intensity/Cd')plt.subplot(2,2,3)
plt.title('第三次监测')
plt.plot(x, data41, color='green', label='平滑前')
plt.plot(x, data42, color='red',label='平滑后')
plt.legend() # 显示图例
plt.xlabel('Wavelength/nm')
plt.ylabel('Intensity/Cd')plt.subplot(2,2,4)
plt.title('第四次监测')
plt.plot(x, data41, color='green', label='平滑前')
plt.plot(x, data42, color='red',linestyle='dashed', label='平滑后')
plt.legend() # 显示图例
plt.xlabel('Wavelength/nm')
plt.ylabel('Intensity/Cd')
plt.show()

这篇关于python实现时序平滑算法SG滤波器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/845756

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time