python实现时序平滑算法SG滤波器

2024-03-25 17:44

本文主要是介绍python实现时序平滑算法SG滤波器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🍉CSDN小墨&晓末:https://blog.csdn.net/jd1813346972

   个人介绍: 研一|统计学|干货分享
         擅长Python、Matlab、R等主流编程软件
         累计十余项国家级比赛奖项,参与研究经费10w、40w级横向

文章目录

  • 1 简介
  • 2 数据背景
  • 3 S-G平滑滤波实操
  • 4 完整代码

该篇文章针对火焰光谱数据使用S-G平滑滤波对原始光频信息本身带有的较多的噪声信号的火焰毛刺数据进行处理,减少由于噪声导致的对火焰有效红外光谱特征数据的正确获取结果产生较大的影响,包括模型原理,Python实操及对应的可视化分析和结果解读。

1 简介

  S-G (Savitzky-Goloy)滤波器率由Savizky 、 Golay两人共同提出,该方法在时间序列这一领域中得到了广泛的应用。最小二乘法拟合的原理,是S-G平滑滤波的基础原理,针对需要处理的数据,通过多项式加权拟合方式,同时结合一定长度窗口的大小,最终获取最小均方根误差。陈晋等人通过实验验证指出S-G滤波器参数m、d的推荐的取值范围分别为2至7、2至4,本次演示最终选取C-G滤波器参数m=6,d=3。S-G基本平滑原理如式:

Y ( 2 m + 1 ) × 1 = X ( 2 m + 1 ) × d A d × 1 + E ( 2 m + 1 ) × d Y_{(2m+1)×1}=X_{(2m+1)×d}A_{d×1}+E_{(2m+1)×d} Y(2m+1)×1=X(2m+1)×dAd×1+E(2m+1)×d

  其中: Y Y Y为某一窗口拟合值矩阵; X X X表示变量矩阵; A A A表示多项式拟合系数矩阵; E E E表示残差矩阵;m表示半窗口大小;d-1表示拟合最大次数;N 为窗口大小,其中N值大小符合 N = 2m + 1。

  原理图展示:

  把光谱一段区间的等波长间隔的5个点记为X集合,多项式平滑就是利用在波长点为Xm-2,Xm-1,Xm,Xm+1,Xm+2的数据的多项式拟合值来取代Xm,,然后依次移动,直到把光谱遍历完。

2 数据背景

  本次演示中所用数据均来源于2016年的APMCM竞赛的A题数据(下载地址 ),官网提供的数据文件中包含着3组金属冶炼过程中照片探测器监测得到的光谱信息数据。每组数据文件变量共涉及时间t(间距0.5s)、炉内燃烧气体的累积消耗Q、燃烧气体的累积消耗比p、光学信息的数据(f_1-f_2048、不同频率光强)、开尔文温度t和关键元素碳含量共2053个属性。

  火焰在人的肉眼观察情况下存在有不同的焰火颜色的变化,其根本原因是因为火焰燃烧过程中火焰的光谱情况的变化。因此利用光电探测器采集得到的火焰光谱实验数据呈现渐进式变化过程(见下图)。

  该图像刻画出了第一组实验数据炉内进行转炉炼钢的同时,每间隔0.5s炉内各波长光谱数据强度情况,可以看到在连续监测过程中,每一次监测得到的火焰光谱各波长强度情况存在具较高相似度,存在明显规律性。每一次监测中,波长由低到高总体均呈现“平缓-急剧上升-急剧下降-缓慢上升-缓慢下降”的变化特征,且高峰数据多集中于波长段“f_1200-f_1300”之间。

3 S-G平滑滤波实操

  考虑到若直接利用通过红外光电探测器所收集获取得到的火焰原始红外光谱信息进行炉转终点温度及碳元素含量预测,可能会由于原始光频信息本身带有的较多的噪声信号的火焰毛刺数据,进而会对火焰有效红外光谱特征数据的正确获取结果产生较大的影响,因此,该演示将利用Savitzky-Goloy滤波器技术对光电探测器所获得火焰的红外原始光谱数据进行光谱数据预处理,对其进行平滑操作减少噪声数据带来的影响。下图表示为原始红外光谱数据预处理完成后得到的火焰光谱各波长强度情况。

  通过上图可以看出,与平滑前光谱的数据相比,该图中的显著突出数据明显得到改善,且平滑后并未对光谱波长强度总体分布特征造成影响,为进一步查看观测Savitzky-Goloy平滑滤波器应用于光谱信息上的效果,本实验绘制了第一组前四次监测的火焰光谱数据平滑前后效果,见下图所示。

  通过上图可以看出,平滑前部分毛刺数据经过Savitzky-Goloy滤波后得到很好的处理,特别是对于异常凸起的毛刺数据,认为原始红外光谱数据通过Savitzky-Goloy滤波器技术对噪声数据有着明显的改进效果。

4 完整代码

from matplotlib import pyplot as plt
from scipy.signal import savgol_filter##Savitzky-Golay 平滑
import numpy as np  
import openpyxl 
import pandas as pd##初始绘三维图
df=pd.read_excel('D:\\1 - 副本.xlsx')#读取数据
height,width = df.shape
print(height,width,type(df))#数据大小
##提取光信息特征
data2=df.iloc[:,3:2051]#光学频率:1-2048
from matplotlib import pyplot as plt
%matplotlib inline
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = Axes3D(fig)
x = np.arange(0,2048)
y = np.arange(0,404)
X, Y = np.meshgrid(x, y)
Z = np.array(data2)# 具体函数方法可用 help(function) 查看,如:help(ax.plot_surface)
ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='rainbow')
ax.set_zlim(0, 25000)
ax.set_xlabel('Wavelength/nm')
ax.set_ylabel('Frame')
ax.set_zlabel('Intensity/Cd')
plt.show()
# 设置坐标轴的名称##Savitzky-Golay 平滑
df=pd.read_excel('C:\\3 - 副本.xlsx')#读取数据
height,width = df.shape
print(height,width,type(df))#数据大小
data=df.iloc[:,3:2051]#光学频率:1-2048newans=pd.DataFrame()
for i in range(286):data0=data.loc[i]newans1 = savgol_filter(list(data0), 17, 3, mode= 'nearest')newans2 =pd.DataFrame(newans1).Tnewans=newans.append(newans2)data1 = pd.DataFrame(newans.values, index=data.index, columns=data.columns)##更改行列名data1["t"]=df.iloc[:,0]
data1["Q"]=df.iloc[:,1]
data1["P"]=df.iloc[:,2]
data1["T(K)"]=df.iloc[:,2051]
data1["C"]=df.iloc[:,2052]
data1.to_excel('C:\\平滑后3.xlsx',index=False)##绘制三维图df=pd.read_excel('C:\\平滑后3.xlsx')#读取数据
height,width = df.shape
print(height,width,type(df))#数据大小
##提取光信息特征
data2=df.iloc[:,0:2048]#光学频率:1-2048
from matplotlib import pyplot as plt
%matplotlib inline
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = Axes3D(fig)
x = np.arange(0,2048)
y = np.arange(0,286)
X, Y = np.meshgrid(x, y)
Z = np.array(data2)# 具体函数方法可用 help(function) 查看,如:help(ax.plot_surface)
ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='rainbow')
ax.set_zlim(0, 25000)
# 设置坐标轴的名称
ax.set_xlabel('Wavelength/nm')
ax.set_ylabel('Frame')
ax.set_zlabel('Intensity/Cd')
plt.show()##绘制折线图
df=pd.read_excel('D:\\1 - 副本.xlsx')#读取数据
height,width = df.shape
print(height,width,type(df))#数据大小
##提取光信息特征
data21=df.iloc[0,3:2051]#光学频率:1-2048
data31=df.iloc[1,3:2051]#光学频率:1-2048
data41=df.iloc[2,3:2051]#光学频率:1-2048
data51=df.iloc[3,3:2051]#光学频率:1-2048df1=pd.read_excel('D:\\平滑后1.xlsx')#读取数据
height,width = df.shape
print(height,width,type(df))#数据大小
##提取光信息特征
data22=df1.iloc[0,0:2048]#光学频率:1-2048
data32=df1.iloc[1,0:2048]#光学频率:1-2048
data42=df1.iloc[2,0:2048]#光学频率:1-2048
data52=df1.iloc[3,0:2048]#光学频率:1-2048
# -*- coding: UTF-8 -*-
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt#这里导入你自己的数据
#......
#......
#x_axix,train_pn_dis这些都是长度相同的list()#开始画图
# matplotlib其实是不支持显示中文的 显示中文需要一行代码设置字体  
import matplotlib
import matplotlib.pyplot as plt 
mpl.rcParams['font.family'] = 'SimHei'  
plt.rcParams['axes.unicode_minus'] = False   # 步骤二(解决坐标轴负数的负号显示问题)  
matplotlib.rcParams['xtick.labelsize'] =15#x、y轴刻度值大小
matplotlib.rcParams['ytick.labelsize'] =15
matplotlib.rcParams['axes.labelsize'] = 15#x轴、y轴标签值大小
plt.figure(figsize=(12, 12))plt.subplot(2,2,1)
x=np.arange(1,2049,1)plt.title('第一次监测')
plt.plot(x, data21, color='green',label='平滑前')
plt.plot(x, data22, color='red',label='平滑后')plt.legend() # 显示图例plt.xlabel('Wavelength/nm')
plt.ylabel('Intensity/Cd')#python 一个折线图绘制多个曲线
plt.subplot(2,2,2)
plt.title('第二次监测')
plt.plot(x, data31, color='green', label='平滑前')
plt.plot(x, data32, color='red', label='平滑后')
plt.legend() # 显示图例
plt.xlabel('Wavelength/nm')
plt.ylabel('Intensity/Cd')plt.subplot(2,2,3)
plt.title('第三次监测')
plt.plot(x, data41, color='green', label='平滑前')
plt.plot(x, data42, color='red',label='平滑后')
plt.legend() # 显示图例
plt.xlabel('Wavelength/nm')
plt.ylabel('Intensity/Cd')plt.subplot(2,2,4)
plt.title('第四次监测')
plt.plot(x, data41, color='green', label='平滑前')
plt.plot(x, data42, color='red',linestyle='dashed', label='平滑后')
plt.legend() # 显示图例
plt.xlabel('Wavelength/nm')
plt.ylabel('Intensity/Cd')
plt.show()

这篇关于python实现时序平滑算法SG滤波器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/845756

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形