从零学算法212

2024-03-25 17:36
文章标签 算法 零学 212

本文主要是介绍从零学算法212,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

212.给定一个 m x n 二维字符网格 board 和一个单词(字符串)列表 words, 返回所有二维网格上的单词 。
单词必须按照字母顺序,通过 相邻的单元格 内的字母构成,其中“相邻”单元格是那些水平相邻或垂直相邻的单元格。同一个单元格内的字母在一个单词中不允许被重复使用。
示例 1:
输入:board = [[“o”,“a”,“a”,“n”],[“e”,“t”,“a”,“e”],[“i”,“h”,“k”,“r”],[“i”,“f”,“l”,“v”]], words = [“oath”,“pea”,“eat”,“rain”]
输出:[“eat”,“oath”]
示例 2:
输入:board = [[“a”,“b”],[“c”,“d”]], words = [“abcb”]
输出:[]
提示:
m == board.length
n == board[i].length
1 <= m, n <= 12
board[i][j] 是一个小写英文字母
1 <= words.length <= 3 * 104
1 <= words[i].length <= 10
words[i] 由小写英文字母组成
words 中的所有字符串互不相同

  • 这里我首先想到的是遍历所有 words,然后再遍历所有 board 尝试每个字符作为起点能否得到某个 word,但是超时了,这里可以转换思路,遍历所有 board,得到以每个字符开始,组成字符串的所有可能性,然后看是否在 words 中,是就加入结果列表 res
  •   // 方向数组int[][] dirs = new int[][]{{1,0},{-1,0},{0,1},{0,-1}};char[][] board;int m,n;// 存储 words 中的 wordSet<String> set = new HashSet<>();// 记录 board 中每个字符是否已使用boolean[][] visit = new boolean[12][12];// 结果列表List<String> res = new ArrayList<>();public List<String> findWords(char[][] _board, String[] words) {board = _board;m= board.length;n= board[0].length;for(String s:words)set.add(s);StringBuilder sb = new StringBuilder();// 尝试所有字符为起点得到可能的路径for(int i=0;i<m;i++){for(int j=0;j<n;j++){visit[i][j]=true;sb.append(board[i][j]);dfs(i,j,sb);visit[i][j] = false;sb.deleteCharAt(sb.length() - 1);}}return res;}void dfs(int i, int j, StringBuilder sb) {// 因为 word 长度至多为 10 所以再往后就不找了if(sb.length() > 10)return;// 当前路径在 set 中就得到一个结果,记得去除 set 中该路径if(set.contains(sb.toString())){res.add(sb.toString());set.remove(sb.toString());}for(int[] d : dirs){int x = i + d[0];int y = j + d[1];if(x < 0 || x >= m || y < 0 || y >= n)continue;if(visit[x][y])continue;visit[x][y] = true;sb.append(board[x][y]);dfs(x, y, sb);visit[x][y] = false;sb.deleteCharAt(sb.length() - 1);}}
    
  • 上述解法只在当前搜索路径达到 10 才进行剪枝,为了优化为每一步搜索都剪枝,我们可以使用前缀树(Trie),可以参考力扣 208 题的题解,我也趁此学习完记录了一下。该题解原文中也包含了前缀树的讲解。
  • 这里我们把 isEnd 直接替换为一个 String 类型的变量 s,记录该尾字符对应的字符串。我们创建一个前缀树,将 word 都存入其中,然后遍历 borad 每个字符作为起点,如果前缀树的根节点的子节点都不包含该字符,那就都不用 dfs 了直接下一位。
  • dfs 过程如果遇到了 s 不为 null 的情况,表示 board 存在路径对应 s(也就是 word),那就加入 set,因为 dfs 过程中可能不止一次找到该字符串,所以先用 set 记录,最后遍历添加到 res 即可。
  •   class Solution {class TrieNode {String s;TrieNode[] tns = new TrieNode[26];}void insert(String s) {TrieNode p = root;for (char c:s.toCharArray()) {int u = c - 'a';if (p.tns[u] == null) p.tns[u] = new TrieNode();p = p.tns[u];}p.s = s;}int[][] dirs = new int[][]{{1,0},{-1,0},{0,1},{0,-1}};char[][] board;int m,n;Set<String> set = new HashSet<>();boolean[][] visit = new boolean[12][12];List<String> res = new ArrayList<>();TrieNode root = new TrieNode();public List<String> findWords(char[][] _board, String[] words) {board = _board;m= board.length;n= board[0].length;for(String s:words)insert(s);for(int i=0;i<m;i++){for(int j=0;j<n;j++){int u = board[i][j] - 'a';// 前缀树中有字符串以当前字符开头才寻找路径if(root.tns[u] != null){visit[i][j]=true; dfs(i,j,root.tns[u]);visit[i][j] = false;}}}for(String s:set)res.add(s);return res;}void dfs(int i, int j, TrieNode node) {// 因为每一步都合法,所以只要能找到这一步就加入 setif(node.s != null)set.add(node.s);for(int[] d : dirs){int x = i + d[0];int y = j + d[1];if(x < 0 || x >= m || y < 0 || y >= n)continue;if(visit[x][y])continue;int u = board[x][y] - 'a';// 之前是写死了长度大于 10 则停止搜索// 而这里只要当前字符不在 word 的需求中就停止搜索// 比如 words 为 [abcd,accd,adcd],当前字符搜索到了前缀树第二层// 前缀树第二层包含了 [b,c,d],可如果当前字符是比如 e,那就不需要再找了// ae*** 无论如何都不会在 words 中if(node.tns[u] != null){visit[x][y] = true;dfs(x, y, node.tns[u]);visit[x][y] = false;}}}}
    

这篇关于从零学算法212的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/845744

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

dp算法练习题【8】

不同二叉搜索树 96. 不同的二叉搜索树 给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。 示例 1: 输入:n = 3输出:5 示例 2: 输入:n = 1输出:1 class Solution {public int numTrees(int n) {int[] dp = new int

Codeforces Round #240 (Div. 2) E分治算法探究1

Codeforces Round #240 (Div. 2) E  http://codeforces.com/contest/415/problem/E 2^n个数,每次操作将其分成2^q份,对于每一份内部的数进行翻转(逆序),每次操作完后输出操作后新序列的逆序对数。 图一:  划分子问题。 图二: 分而治之,=>  合并 。 图三: 回溯:

最大公因数:欧几里得算法

简述         求两个数字 m和n 的最大公因数,假设r是m%n的余数,只要n不等于0,就一直执行 m=n,n=r 举例 以18和12为例 m n r18 % 12 = 612 % 6 = 06 0所以最大公因数为:6 代码实现 #include<iostream>using namespace std;/