月之暗面Kimi代码分析能力评测

2024-03-25 08:44

本文主要是介绍月之暗面Kimi代码分析能力评测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近打算重构一下PawSQL优化引擎中的OR条件的SELECT重写优化策略的代码,时间有点久,代码有点复杂,看到网上对新出了KIMI评价很高。于是尝试用它来理解一下代码。上传了此优化重写的代码,提问:

第一问,设计思路

KIMI的输出:

这段代码是一个Java类,名为`RuleOrCond4SelectRewrite`,它是`AuditRule`的一个子类,用于优化SQL查询语句中的`OR`条件。以下是对代码设计思路的总结:1. **类目的**:该类的目的是重写包含`OR`条件的`SELECT`查询语句,以提高查询效率。这通常涉及到将多个`OR`条件分解并重组成可以使用`UNION ALL`或`AND`条件的查询块。2. **审计方法(`audit`)**:这是类的核心方法,它首先检查传入的`SQLObject`是否为`QueryStatement`类型。如果不是,方法返回`null`。如果是,它会创建一个`RuleAuditResult`对象来存储审计结果。3. **查询选择的识别**:通过`QueryBlockHelper.findQueryBlockInStatement`方法,找到查询语句中的所有`QueryBlock`对象,并对它们进行遍历处理。4. **处理`OR`条件**:对于每个`QueryBlock`对象,代码会检查其`WHERE`子句。如果存在`OR`条件,它会使用`SATRewriter.rewrite`方法进行重写,并通过`getOrConditions`方法提取所有的`OR`条件。5. **条件的独占性**:代码检查提取出的`OR`条件是否互斥(即它们是否可以同时为真)。如果是,它们会被用于构建一个`UNION ALL`查询。6. **查询重构**:根据查询的不同特点(如是否包含聚合函数、排序、限制等),代码会采取不同的重构策略。例如,如果没有聚合函数和排序,可以使用`UNION ALL`;如果包含排序,可能需要在外部查询块中添加排序。7. **重写和替换**:重构后的查询会替换原始查询,这通过`QueryBlockHelper.replace`方法实现。审计结果会记录原始的`WHERE`子句和重写后的查询。8. **分数评估**:`getScore`方法用于评估`OR`条件的重写优先级,基于条件的可索引性和查询的特性给予不同的分数。9. **辅助方法**:类中还包含了一些辅助方法,如`getUpperObject`用于获取`OR`条件的上层对象,`getWholeCondition`用于获取整个条件对象,`rewriteOrConditions`用于实际执行`OR`条件的重写。总体来说,这个类的设计思路是通过识别和处理SQL查询中的`OR`条件,将它们重写为更高效的查询形式,从而优化查询性能。代码考虑了多种查询情况,并提供了相应的重写策略。

评价:总体来说,KIMI的理解还是比较准确的,代码基本没有注释,单单通过代码的逻辑,就能够理解代码的含义,还是比较让人惊艳的。特别是第5点条件互斥性、以及第8点分数评估, 作为主逻辑的补充部分,都能理解非常到位。

第二问,查询重写的策略

KIMI的输出:

查询重构的策略主要针对包含`OR`条件的`SELECT`查询语句。在`RuleOrCond4SelectRewrite`类中,根据查询的不同特点,代码实现了几种不同的重构策略。以下是这些策略的详细说明:1. **无聚合、无排序、无限制的查询**:- 如果`QueryBlock`对象不包含聚合函数、没有排序子句、没有限制子句,并且不是聚合查询块,那么可以对`OR`条件进行重构。- 对于每个`OR`条件,创建一个新的`QueryBlock`对象的副本,并设置其`WHERE`子句为当前的`OR`条件。- 使用`QueryCombined`对象构建`UNION ALL`查询,将所有这些副本组合起来。- 如果条件互斥,使用`UNION ALL`操作符;如果不互斥,根据条件是否包含`DISTINCT`关键字来调整查询的`DISTINCT`属性。2. **包含排序的查询**:- 如果`QueryBlock`包含排序子句,需要特别处理排序,因为排序通常依赖于特定的数据集。- 首先,创建一个新的`QueryBlock`对象,移除排序子句中的`ORDER BY`表达式,或者调整`LIMIT`子句以确保排序的有效性。- 然后,对于每个`OR`条件,创建一个嵌套查询,并将排序列添加到选择列表中。- 将这些嵌套查询组合成一个`QueryCombined`对象,使用`UNION ALL`操作符(如果条件互斥)或适当的`AND`/`OR`组合。- 最后,将排序子句添加到最外层的查询中,以保持原始查询的排序要求。3. **包含聚合函数的查询**:- 如果查询包含聚合函数,处理会稍微复杂一些,因为聚合函数可能会影响`OR`条件的处理。- 首先,从选择列表中提取列引用,并创建一个新的选择列表。- 然后,对于每个`OR`条件,创建一个嵌套查询,并将其作为`UNION ALL`的一部分。- 在这个过程中,需要确保聚合函数的正确性,并且可能需要在新的选择列表中包含主键或其他唯一标识符。- 最后,将这些嵌套查询组合起来,并清除原始查询中的`WHERE`子句、`GROUP BY`子句、`SORT BY`子句和`HAVING`子句。4. **包含限制的查询**:- 如果查询包含`LIMIT`子句,需要考虑`LIMIT`和`OFFSET`的影响。- 通常,会创建一个新的`QueryBlock`对象,并复制原始查询的选择列表和`WHERE`子句。- 对于每个`OR`条件,创建一个嵌套查询,并将其添加到`QueryCombined`对象中。- 根据条件是否互斥,设置`UNION ALL`操作符或适当的`AND`/`OR`组合。- 将`LIMIT`子句添加到最外层的查询中,以保持原始查询的限制要求。这些策略的共同目标是将原始的、可能效率较低的查询重构为更高效的查询形式,同时保持查询结果的一致性。通过这种方式,可以提高数据库查询的性能,尤其是在处理包含多个`OR`条件的复杂查询时。

评价:相比较设计思路的总结,KIMI对于每一种策略的总结就略差一些。首先,分类不完备且不互斥,且和实际分类略有不同;其次,KIMI似乎是有意识地按照其定义的类别的含义进行针对性总结,而忽略和类别名称无关的内容,从而使得它的输出整体上是自洽的。其中对于分数评估,事实上这是评估策略是否实施的主要依据,只有代价比重写前更低时,才会实施策略,而KIMI在它的回答里完全忽略了。

第三问,针对每种策略提供一个案例

KIMI的输出:

当然可以。以下是针对每种查询重构策略的SQL示例:1. **无聚合、无排序、无限制的查询**:假设我们有一个名为`employees`的表,其中包含员工的信息,我们想要选择所有满足以下任一条件的员工记录:```sqlSELECT * FROM employees WHERE (department = 'Sales' OR department = 'Marketing');```重构后的查询可能会使用`UNION ALL`来分开每个条件,并保持它们作为一个整体查询:```sqlSELECT * FROM employees WHERE department = 'Sales'UNION ALLSELECT * FROM employees WHERE department = 'Marketing';```2. **包含排序的查询**:如果我们想要根据员工的部门和工资进行排序,并且只选择工资高于某个值的员工:```sqlSELECT * FROM employees WHERE salary > 50000 ORDER BY department, salary DESC;```重构后的查询可能会创建一个外部查询,其中包含排序要求,并在内部使用`UNION ALL`来合并满足不同`OR`条件的查询:```sqlSELECT * FROM (SELECT * FROM employees WHERE salary > 50000 AND department = 'Sales' ORDER BY salary DESCUNION ALLSELECT * FROM employees WHERE salary > 50000 AND department = 'Marketing' ORDER BY salary DESC) AS sorted_results;```3. **包含聚合函数的查询**:如果我们想要计算每个部门的平均工资,并且只考虑工资高于某个值的员工:```sqlSELECT department, AVG(salary) AS avg_salary FROM employees WHERE salary > 50000 GROUP BY department;```重构后的查询可能会创建一个临时表或子查询,用于处理每个部门的`OR`条件,然后在外层查询中进行聚合:```sqlSELECT department, AVG(salary) AS avg_salary FROM (SELECT department, salary FROM employees WHERE salary > 50000 AND department = 'Sales'UNION ALLSELECT department, salary FROM employees WHERE salary > 50000 AND department = 'Marketing') AS subquery GROUP BY department;```4. **包含限制的查询**:如果我们想要从`employees`表中选择满足特定条件的前10名员工记录:```sqlSELECT * FROM employees WHERE (department = 'Sales' OR department = 'Marketing') LIMIT 10;```重构后的查询可能会创建多个查询,每个查询对应一个部门,并使用`UNION ALL`合并结果,同时保持`LIMIT`子句:```sqlSELECT * FROM employees WHERE department = 'Sales' LIMIT 10UNION ALLSELECT * FROM employees WHERE department = 'Marketing' LIMIT 10;```注意:在实际应用中,可能需要调整`LIMIT`的值以确保最终结果的准确性,因为`UNION ALL`会合并所有结果,可能会超出原始的`LIMIT`。这些示例展示了如何根据不同的查询特点重构包含`OR`条件的SQL查询,以提高查询性能和效率。

评价:这部分KIMI表现就差了一些,只有第一个举例是正确的。而2、3、4是错误的,错误即使按照它自己在第二问中的总结,也是错误的。譬如对于第2类包含排序的查询,KIMI在第二问的回答中说`最后,将排序子句添加到最外层的查询中,以保持原始查询的排序要求`,而其提供的案例却没有做到这一点;对于第4类包含LIMIT的查询,KIMI在第二问的回答中说`将LIMIT子句添加到最外层的查询中,以保持原始查询的限制要求。`,而其提供的案例却没有做到这一点。

总体评测的感觉是,KIMI对于代码的理解还是比较令人惊艳的;但是基于理解生成案例的能力就比较薄弱。作为一个开发者工具,辅助理解代码,还是非常不错的;同时开发者也需要具有一定的辨别能力,特别是当模型的输出看起来非常`有道理`时,不要被它给欺骗了,毕竟,它确实已经具有了`欺骗`的能力了。

PawSQL往期文章精选

PawSQL 常见问题解答

你真的理解如何将OR重写为UNION吗?

高级SQL优化 | 查询折叠(Query Folding)

SQL中的NULL值陷阱

关于PawSQL

PawSQL专注数据库性能优化的自动化和智能化,支持MySQL,PostgreSQL,Opengauss等,提供的SQL优化产品包括

  • PawSQL Cloud,在线自动化SQL优化工具,支持SQL审查,智能查询重写、基于代价的索引推荐,适用于数据库管理员及数据应用开发人员,
  • PawSQL Advisor,IntelliJ 插件, 适用于数据应用开发人员,可以IDEA/DataGrip应用市场通过名称搜索“PawSQL Advisor”安装。

这篇关于月之暗面Kimi代码分析能力评测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/844457

相关文章

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

计算机毕业设计 大学志愿填报系统 Java+SpringBoot+Vue 前后端分离 文档报告 代码讲解 安装调试

🍊作者:计算机编程-吉哥 🍊简介:专业从事JavaWeb程序开发,微信小程序开发,定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事,生活就是快乐的。 🍊心愿:点赞 👍 收藏 ⭐评论 📝 🍅 文末获取源码联系 👇🏻 精彩专栏推荐订阅 👇🏻 不然下次找不到哟~Java毕业设计项目~热门选题推荐《1000套》 目录 1.技术选型 2.开发工具 3.功能

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

MOLE 2.5 分析分子通道和孔隙

软件介绍 生物大分子通道和孔隙在生物学中发挥着重要作用,例如在分子识别和酶底物特异性方面。 我们介绍了一种名为 MOLE 2.5 的高级软件工具,该工具旨在分析分子通道和孔隙。 与其他可用软件工具的基准测试表明,MOLE 2.5 相比更快、更强大、功能更丰富。作为一项新功能,MOLE 2.5 可以估算已识别通道的物理化学性质。 软件下载 https://pan.quark.cn/s/57

代码随想录冲冲冲 Day39 动态规划Part7

198. 打家劫舍 dp数组的意义是在第i位的时候偷的最大钱数是多少 如果nums的size为0 总价值当然就是0 如果nums的size为1 总价值是nums[0] 遍历顺序就是从小到大遍历 之后是递推公式 对于dp[i]的最大价值来说有两种可能 1.偷第i个 那么最大价值就是dp[i-2]+nums[i] 2.不偷第i个 那么价值就是dp[i-1] 之后取这两个的最大值就是d

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip

衡石分析平台使用手册-单机安装及启动

单机安装及启动​ 本文讲述如何在单机环境下进行 HENGSHI SENSE 安装的操作过程。 在安装前请确认网络环境,如果是隔离环境,无法连接互联网时,请先按照 离线环境安装依赖的指导进行依赖包的安装,然后按照本文的指导继续操作。如果网络环境可以连接互联网,请直接按照本文的指导进行安装。 准备工作​ 请参考安装环境文档准备安装环境。 配置用户与安装目录。 在操作前请检查您是否有 sud

线性因子模型 - 独立分量分析(ICA)篇

序言 线性因子模型是数据分析与机器学习中的一类重要模型,它们通过引入潜变量( latent variables \text{latent variables} latent variables)来更好地表征数据。其中,独立分量分析( ICA \text{ICA} ICA)作为线性因子模型的一种,以其独特的视角和广泛的应用领域而备受关注。 ICA \text{ICA} ICA旨在将观察到的复杂信号