深究KNIME分析平台上的节点是如何实现推荐原理的

2024-03-25 05:40

本文主要是介绍深究KNIME分析平台上的节点是如何实现推荐原理的,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

kinme节点推荐分为社区推荐和服务器推荐,社区推荐即为官方hub,网址https://hub.knime.com/,这个是knime官方存储节点和流程库的,里面也会时常更新。
社区推荐就根据很多使用社区里面节点的频率。服务器推荐是knime-server上存储的节点,我们在KAP分析平台上可以通过knime-serve的api直接连接到服务器上,可以下载服务器上的节点到KAP分析平台上,它就根据用户在服务上使用的节点频率进行节点推荐,但它推荐的节点只是服务器本地resposity里面现有的节点。
Workspace推荐代码
源码有这么一段话
Frequency of how often the nodes were used in the workflows of your workspace.
在工作区的工作流中使用节点的频率。
在这里插入图片描述

这部分代码是获取节点频率的

    return NodeFrequencies.from(Files.newInputStream(WORKSPACE_NODE_TRIPLES_JSON_FILE)).getFrequencies().stream();

worksapce的节点使用率存在了一个名为workspace_recommendations.json的json文件内,每次更新最自动根据KNIME的工作空间(D:\Users\nn\knime-workspace.metadata\knime)路径找到这个文件,并对其更新,在KAP平台上拖动节点,work coach会自动根据最新的json数据来进行节点推荐。

static {PREFS = new ScopedPreferenceStore(InstanceScope.INSTANCE, FrameworkUtil.getBundle(WorkspaceTripleProvider.class).getSymbolicName());WORKSPACE_NODE_TRIPLES_JSON_FILE = Paths.get(KNIMEConstants.getKNIMEHomeDir(), "workspace_recommendations.json");
}

community推荐机制代码
在这里插入图片描述
CommunityTripleProvider.java

//
// Source code recreated from a .class file by IntelliJ IDEA
// (powered by Fernflower decompiler)
//package org.knime.workbench.workflowcoach.data;import java.util.Collections;
import java.util.List;
import org.eclipse.core.runtime.preferences.InstanceScope;
import org.eclipse.ui.preferences.ScopedPreferenceStore;
import org.osgi.framework.FrameworkUtil;public class CommunityTripleProvider extends AbstractFileDownloadTripleProvider {private static final ScopedPreferenceStore PREFS;static {PREFS = new ScopedPreferenceStore(InstanceScope.INSTANCE, FrameworkUtil.getBundle(CommunityTripleProvider.class).getSymbolicName());}public CommunityTripleProvider() {super("https://update.knime.com/community_recommendations.json", "community_recommendations.json");}public String getName() {return "Community";}public String getDescription() {return "Frequency of how often the KNIME community used this node.";}public boolean isEnabled() {return PREFS.getBoolean("community_node_triple_provider");}public static final class Factory implements NodeTripleProviderFactory {public Factory() {}public List<NodeTripleProvider> createProviders() {return Collections.singletonList(new CommunityTripleProvider());}public String getPreferencePageID() {return "org.knime.workbench.workflowcoach";}}
}

上面代码社区的推荐代码,可以看到推荐的原理是我们请求一个url,这个url返回一个json数据,这个数据是最近社区一些节点的使用频率

 private static void fillRecommendationsMap(Map<String, List<NodeRecommendationManager.NodeRecommendation>> recommendationMap, NodeTriple nf) {if (!nf.getNode().isPresent() && !nf.getPredecessor().isPresent() && isSourceNode(nf.getSuccessor())) {add(recommendationMap, "<source_nodes>", nf.getSuccessor(), nf.getCount());}if (!nf.getPredecessor().isPresent() && nf.getNode().isPresent() && isSourceNode((NodeInfo)nf.getNode().get())) {add(recommendationMap, "<source_nodes>", (NodeInfo)nf.getNode().get(), nf.getCount());}if (nf.getNode().isPresent()) {add(recommendationMap, getKey((NodeInfo)nf.getNode().get()), nf.getSuccessor(), nf.getCount());}if (nf.getPredecessor().isPresent() && nf.getNode().isPresent()) {add(recommendationMap, getKey((NodeInfo)nf.getPredecessor().get()) + "#" + getKey((NodeInfo)nf.getNode().get()), nf.getSuccessor(), nf.getCount());}}

实验
在这里插入图片描述
这里我新建一个流程,其中Data Generator为社区的节点,其功能为数字生成器,Test是我自己自定义开发的节点,其功能是可以调整数据保留几位小数。后面两个分别是画直线图和散点图。
在这里插入图片描述
在这里插入图片描述

一开始我把在eclipse上自定义开发的节点达成jar包放到knime安装目录下的dropin目录下,这样打开KNIME分析平台就可以看到这个节点了。但是当选中此节点时,此时的workflow coach没有任何推荐的节点,我们执行这个流程并保存。
打开workflow coach配置,点击更新,此时会下载更新一个名为workspace_recommendations.json。里面存储了当前工作区每个节点使用的频率。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

可以看到Test节点的前驱为Data Generator,后继为Scatter Plot和Line Plot
此时再查看workflow coach
在这里插入图片描述

可以看出Scatter Plot和Line Plot分别为50%,同理社区的节点推荐元也是如此,不过这个每次更新都能远程下载一个节点使用频率的json文件,还有在工作区上,分析平台时如何监视节点的,并算出频率的,这些问题还有待研究。

这篇关于深究KNIME分析平台上的节点是如何实现推荐原理的的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/843998

相关文章

Java中使用Java Mail实现邮件服务功能示例

《Java中使用JavaMail实现邮件服务功能示例》:本文主要介绍Java中使用JavaMail实现邮件服务功能的相关资料,文章还提供了一个发送邮件的示例代码,包括创建参数类、邮件类和执行结... 目录前言一、历史背景二编程、pom依赖三、API说明(一)Session (会话)(二)Message编程客

Java中List转Map的几种具体实现方式和特点

《Java中List转Map的几种具体实现方式和特点》:本文主要介绍几种常用的List转Map的方式,包括使用for循环遍历、Java8StreamAPI、ApacheCommonsCollect... 目录前言1、使用for循环遍历:2、Java8 Stream API:3、Apache Commons

C#提取PDF表单数据的实现流程

《C#提取PDF表单数据的实现流程》PDF表单是一种常见的数据收集工具,广泛应用于调查问卷、业务合同等场景,凭借出色的跨平台兼容性和标准化特点,PDF表单在各行各业中得到了广泛应用,本文将探讨如何使用... 目录引言使用工具C# 提取多个PDF表单域的数据C# 提取特定PDF表单域的数据引言PDF表单是一

使用Python实现高效的端口扫描器

《使用Python实现高效的端口扫描器》在网络安全领域,端口扫描是一项基本而重要的技能,通过端口扫描,可以发现目标主机上开放的服务和端口,这对于安全评估、渗透测试等有着不可忽视的作用,本文将介绍如何使... 目录1. 端口扫描的基本原理2. 使用python实现端口扫描2.1 安装必要的库2.2 编写端口扫

PyCharm接入DeepSeek实现AI编程的操作流程

《PyCharm接入DeepSeek实现AI编程的操作流程》DeepSeek是一家专注于人工智能技术研发的公司,致力于开发高性能、低成本的AI模型,接下来,我们把DeepSeek接入到PyCharm中... 目录引言效果演示创建API key在PyCharm中下载Continue插件配置Continue引言

MySQL分表自动化创建的实现方案

《MySQL分表自动化创建的实现方案》在数据库应用场景中,随着数据量的不断增长,单表存储数据可能会面临性能瓶颈,例如查询、插入、更新等操作的效率会逐渐降低,分表是一种有效的优化策略,它将数据分散存储在... 目录一、项目目的二、实现过程(一)mysql 事件调度器结合存储过程方式1. 开启事件调度器2. 创

使用Python实现操作mongodb详解

《使用Python实现操作mongodb详解》这篇文章主要为大家详细介绍了使用Python实现操作mongodb的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、示例二、常用指令三、遇到的问题一、示例from pymongo import MongoClientf

SQL Server使用SELECT INTO实现表备份的代码示例

《SQLServer使用SELECTINTO实现表备份的代码示例》在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误,在SQLServer中,可以使用SELECTINT... 在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误。在 SQL Server 中,可以使用 SE

基于Go语言实现一个压测工具

《基于Go语言实现一个压测工具》这篇文章主要为大家详细介绍了基于Go语言实现一个简单的压测工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录整体架构通用数据处理模块Http请求响应数据处理Curl参数解析处理客户端模块Http客户端处理Grpc客户端处理Websocket客户端

Java CompletableFuture如何实现超时功能

《JavaCompletableFuture如何实现超时功能》:本文主要介绍实现超时功能的基本思路以及CompletableFuture(之后简称CF)是如何通过代码实现超时功能的,需要的... 目录基本思路CompletableFuture 的实现1. 基本实现流程2. 静态条件分析3. 内存泄露 bug