深究KNIME分析平台上的节点是如何实现推荐原理的

2024-03-25 05:40

本文主要是介绍深究KNIME分析平台上的节点是如何实现推荐原理的,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

kinme节点推荐分为社区推荐和服务器推荐,社区推荐即为官方hub,网址https://hub.knime.com/,这个是knime官方存储节点和流程库的,里面也会时常更新。
社区推荐就根据很多使用社区里面节点的频率。服务器推荐是knime-server上存储的节点,我们在KAP分析平台上可以通过knime-serve的api直接连接到服务器上,可以下载服务器上的节点到KAP分析平台上,它就根据用户在服务上使用的节点频率进行节点推荐,但它推荐的节点只是服务器本地resposity里面现有的节点。
Workspace推荐代码
源码有这么一段话
Frequency of how often the nodes were used in the workflows of your workspace.
在工作区的工作流中使用节点的频率。
在这里插入图片描述

这部分代码是获取节点频率的

    return NodeFrequencies.from(Files.newInputStream(WORKSPACE_NODE_TRIPLES_JSON_FILE)).getFrequencies().stream();

worksapce的节点使用率存在了一个名为workspace_recommendations.json的json文件内,每次更新最自动根据KNIME的工作空间(D:\Users\nn\knime-workspace.metadata\knime)路径找到这个文件,并对其更新,在KAP平台上拖动节点,work coach会自动根据最新的json数据来进行节点推荐。

static {PREFS = new ScopedPreferenceStore(InstanceScope.INSTANCE, FrameworkUtil.getBundle(WorkspaceTripleProvider.class).getSymbolicName());WORKSPACE_NODE_TRIPLES_JSON_FILE = Paths.get(KNIMEConstants.getKNIMEHomeDir(), "workspace_recommendations.json");
}

community推荐机制代码
在这里插入图片描述
CommunityTripleProvider.java

//
// Source code recreated from a .class file by IntelliJ IDEA
// (powered by Fernflower decompiler)
//package org.knime.workbench.workflowcoach.data;import java.util.Collections;
import java.util.List;
import org.eclipse.core.runtime.preferences.InstanceScope;
import org.eclipse.ui.preferences.ScopedPreferenceStore;
import org.osgi.framework.FrameworkUtil;public class CommunityTripleProvider extends AbstractFileDownloadTripleProvider {private static final ScopedPreferenceStore PREFS;static {PREFS = new ScopedPreferenceStore(InstanceScope.INSTANCE, FrameworkUtil.getBundle(CommunityTripleProvider.class).getSymbolicName());}public CommunityTripleProvider() {super("https://update.knime.com/community_recommendations.json", "community_recommendations.json");}public String getName() {return "Community";}public String getDescription() {return "Frequency of how often the KNIME community used this node.";}public boolean isEnabled() {return PREFS.getBoolean("community_node_triple_provider");}public static final class Factory implements NodeTripleProviderFactory {public Factory() {}public List<NodeTripleProvider> createProviders() {return Collections.singletonList(new CommunityTripleProvider());}public String getPreferencePageID() {return "org.knime.workbench.workflowcoach";}}
}

上面代码社区的推荐代码,可以看到推荐的原理是我们请求一个url,这个url返回一个json数据,这个数据是最近社区一些节点的使用频率

 private static void fillRecommendationsMap(Map<String, List<NodeRecommendationManager.NodeRecommendation>> recommendationMap, NodeTriple nf) {if (!nf.getNode().isPresent() && !nf.getPredecessor().isPresent() && isSourceNode(nf.getSuccessor())) {add(recommendationMap, "<source_nodes>", nf.getSuccessor(), nf.getCount());}if (!nf.getPredecessor().isPresent() && nf.getNode().isPresent() && isSourceNode((NodeInfo)nf.getNode().get())) {add(recommendationMap, "<source_nodes>", (NodeInfo)nf.getNode().get(), nf.getCount());}if (nf.getNode().isPresent()) {add(recommendationMap, getKey((NodeInfo)nf.getNode().get()), nf.getSuccessor(), nf.getCount());}if (nf.getPredecessor().isPresent() && nf.getNode().isPresent()) {add(recommendationMap, getKey((NodeInfo)nf.getPredecessor().get()) + "#" + getKey((NodeInfo)nf.getNode().get()), nf.getSuccessor(), nf.getCount());}}

实验
在这里插入图片描述
这里我新建一个流程,其中Data Generator为社区的节点,其功能为数字生成器,Test是我自己自定义开发的节点,其功能是可以调整数据保留几位小数。后面两个分别是画直线图和散点图。
在这里插入图片描述
在这里插入图片描述

一开始我把在eclipse上自定义开发的节点达成jar包放到knime安装目录下的dropin目录下,这样打开KNIME分析平台就可以看到这个节点了。但是当选中此节点时,此时的workflow coach没有任何推荐的节点,我们执行这个流程并保存。
打开workflow coach配置,点击更新,此时会下载更新一个名为workspace_recommendations.json。里面存储了当前工作区每个节点使用的频率。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

可以看到Test节点的前驱为Data Generator,后继为Scatter Plot和Line Plot
此时再查看workflow coach
在这里插入图片描述

可以看出Scatter Plot和Line Plot分别为50%,同理社区的节点推荐元也是如此,不过这个每次更新都能远程下载一个节点使用频率的json文件,还有在工作区上,分析平台时如何监视节点的,并算出频率的,这些问题还有待研究。

这篇关于深究KNIME分析平台上的节点是如何实现推荐原理的的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/843998

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja