pta-洛希极限

2024-03-25 00:36
文章标签 极限 pta 洛希

本文主要是介绍pta-洛希极限,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

科幻电影《流浪地球》中一个重要的情节是地球距离木星太近时,大气开始被木星吸走,而随着不断接近地木“刚体洛希极限”,地球面临被彻底撕碎的危险。但实际上,这个计算是错误的。

洛希极限(Roche limit)是一个天体自身的引力与第二个天体造成的潮汐力相等时的距离。当两个天体的距离少于洛希极限,天体就会倾向碎散,继而成为第二个天体的环。它以首位计算这个极限的人爱德华·洛希命名。(摘自百度百科)

大天体密度与小天体的密度的比值开 3 次方后,再乘以大天体的半径以及一个倍数(流体对应的倍数是 2.455,刚体对应的倍数是 1.26),就是洛希极限的值。例如木星与地球的密度比值开 3 次方是 0.622,如果假设地球是流体,那么洛希极限就是 0.622×2.455=1.52701 倍木星半径;但地球是刚体,对应的洛希极限是 0.622×1.26=0.78372 倍木星半径,这个距离比木星半径小,即只有当地球位于木星内部的时候才会被撕碎,换言之,就是地球不可能被撕碎。

本题就请你判断一个小天体会不会被一个大天体撕碎。

输入格式:

输入在一行中给出 3 个数字,依次为:大天体密度与小天体的密度的比值开 3 次方后计算出的值(≤1)、小天体的属性(0 表示流体、1 表示刚体)、两个天体的距离与大天体半径的比值(>1 但不超过 10)。

输出格式:

在一行中首先输出小天体的洛希极限与大天体半径的比值(输出小数点后2位);随后空一格;最后输出 ^_^ 如果小天体不会被撕碎,否则输出 T_T

输入样例 1:

0.622 0 1.4

输出样例 1:

1.53 T_T

输入样例 2:

0.622 1 1.4

输出样例 2:

0.78 ^_^

根据题目给出关键信息:

  • 洛希极限 = 两个天体密度比值 x 天体的体型 x 天体半径
  • 是否被撕碎:两个天体密度比值 x 天体的体型 < 两个天体距离与大天体半径比值 则不会被撕碎,反之。

已知的数据:

  • 两个天体密度比值
  • 天体的体型
  • 两个天体距离与大天体半径比值

解题顺序

首先计算出洛希极限(无半径) : 两个天体密度比值 x 天体的体型 (保留2位小数)。
判断是否被撕碎 :用计算出来的 两个天体密度比值 x 天体的体型 与两个天体距离与大天体半径比值作比较,
两个天体密度比值 x 天体的体型 < 两个天体距离与大天体半径比值 ,则输出 ^_^
两个天体密度比值 x 天体的体型 > 两个天体距离与大天体半径比值 ,则输出 T_T
根据输出格式编写对应答案:洛希极限 ^_^/T_T

code

#include<bits/stdc++.h>
using namespace std;
int main(){double a,b,c;cin>>a>>b>>c;if(b==0){double m=a*2.455;if(m>=c) printf("%.2lf T_T\n",m);else printf("%.2lf ^_^\n",m);}else{double m=a*1.26;if(m>=c) printf("%.2lf T_T\n",m);else printf("%.2lf ^_^\n",m);}return 0;
}

这篇关于pta-洛希极限的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/843316

相关文章

PTA求一批整数中出现最多的个位数字

作者 徐镜春 单位 浙江大学 给定一批整数,分析每个整数的每一位数字,求出现次数最多的个位数字。例如给定3个整数1234、2345、3456,其中出现最多次数的数字是3和4,均出现了3次。 输入格式: 输入在第1行中给出正整数N(≤1000),在第二行中给出N个不超过整型范围的非负整数,数字间以空格分隔。 输出格式: 在一行中按格式“M: n1 n2 ...”输出,其中M是最大次数,n

pta-2024年秋面向对象程序设计实验一-java

文章申明:作者也为初学者,解答仅供参考,不一定是最优解; 一:7-1 sdut-sel-2 汽车超速罚款(选择结构) 答案: import java.util.Scanner;         public class Main { public static void main(String[] arg){         Scanner sc=new Scanner(System

【matlab 求极限】limit函数求极限

syms x;y1=(4*x^3-2*x^2+x)/(3*x^2+2*x);limit(y1,x,0) >> syms x;y1=(4*x^3-2*x^2+x)/(3*x^2+2*x);limit(y1,x,0)ans =1/2>>

量化交易面试:什么是中心极限定理?

中心极限定理(Central Limit Theorem, CLT)是概率论和统计学中的一个重要定理,它描述了在一定条件下,独立随机变量的和的分布趋向于正态分布的性质。这个定理在量化交易和金融分析中具有重要的应用价值。以下是对中心极限定理的详细解释: 基本概念: 中心极限定理指出,当我们从一个具有任意分布的总体中抽取足够大的样本时,样本均值的分布将近似于正态分布,无论原始总体的分布是什么样的。

《挑战极限,畅享精彩 ——韩星地带:逃脱任务 3 震撼来袭》

在综艺的浩瀚星海中,总有那么一些节目如璀璨星辰般闪耀,而《韩星地带:逃脱任务 3》无疑就是其中的佼佼者。 2024 年,这个令人热血沸腾的真人秀节目再度回归,为观众带来一场惊心动魄的冒险之旅。节目由韩国 “国民 MC” 刘在石领衔主持,他那无与伦比的综艺感和控场能力,如同定海神针般,稳稳地把控着节目的节奏。权俞利,少女时代的魅力成员,勇敢与智慧并存,在节目中展现出令人惊叹的一面。新加入的金东炫

分类预测|基于蜣螂优化极限梯度提升决策树的数据分类预测Matlab程序DBO-Xgboost 多特征输入单输出 含基础模型

分类预测|基于蜣螂优化极限梯度提升决策树的数据分类预测Matlab程序DBO-Xgboost 多特征输入单输出 含基础模型 文章目录 一、基本原理1. 数据准备2. XGBoost模型建立3. DBO优化XGBoost参数4. 模型训练5. 模型评估6. 结果分析与应用原理总结 二、实验结果三、核心代码四、代码获取五、总结 分类预测|基于蜣螂优化极限梯度提升决策树的数据分类

分类预测|基于麻雀优化正则化极限学习机的数据分类预测Matlab程序SSA-RELM 多特征输入多类别输出

分类预测|基于麻雀优化正则化极限学习机的数据分类预测Matlab程序SSA-RELM 多特征输入多类别输出 文章目录 一、基本原理1. 数据准备2. RELM模型建立3. SSA优化RELM参数4. 模型训练5. 模型评估6. 结果分析与应用原理总结 二、实验结果三、核心代码四、代码获取五、总结 分类预测|基于麻雀优化正则化极限学习机的数据分类预测Matlab程序SSA-R

为什么在很多应用中常采用正态分布/高斯分布、中心极限定理

为什么在很多应用中常采用正态分布/高斯分布? 当我们由于缺乏关于某个实数上分布的先验知识而不知道该选择怎么样的形式时,正态分布是默认的比较好的选择,有两个原因: 一,我们想要建模的很多分布的真实情况是比较接近正态分布的。 中心极限定理说明很多独立随机变量的和近似服从正态分布。 二,在具有相同方差的所有可能的概率分布中,正态分布在实数上具有最大的不确定性。 因此,我们可以认为正态分布是对模型加入的

PTA L1-037 A除以B

L1-037 A除以B(10分) 真的是简单题哈 —— 给定两个绝对值不超过100的整数A和B,要求你按照“A/B=商”的格式输出结果。 输入格式: 输入在第一行给出两个整数A和B(−100≤A,B≤100),数字间以空格分隔。 输出格式: 在一行中输出结果:如果分母是正数,则输出“A/B=商”;如果分母是负数,则要用括号把分母括起来输出;如果分母为零,则输出的商应为Error。输出的商

【高等数学】【综合习题】第一章:函数、极限与函数连续性

文章目录 一. 选择二. 填空题1. 泰勒公式2. 积分与极限 三. 大题 一. 选择 x p {x^p} xp 放到一起求极限   正常思路求解:求积分即可。   带入求导:题型不具备典型性。   直接按照求导公式   有界性arctanx的函数图像。   函数图像与极限的结合 取特殊值 夹逼