【Linux】输入系统详述 + 触摸屏应用实战(tslib)

2024-03-25 00:10

本文主要是介绍【Linux】输入系统详述 + 触摸屏应用实战(tslib),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录简述

前言:

一、输入系统

二、Linux输入系统框架

(1)输入系统的驱动层

 (2)输入系统核心层

(3)输入系统事件层

三、APP访问硬件的方式

(1)查询方式、休眠-唤醒

具体示例:

实际效果: 

(2)POLL/SELECT方式

具体示例:

实际效果:

(3)异步通知方式

 具体示例:

实际效果:

四、tslib库框架

(1)电容屏简述

(2)tslib库的用处

(3)tslib框架分析

五、基于tslib的测试程序:

(1)交叉编译tslib库

(2)板子上测试编译

测试结果:

 六、基于tslib的应用实战:

 具体示例:

实际效果:


前言:

经典环节:我一直深信,带着问题思考和实践,能够更容易理解并学习到。

(1)什么是输入系统?

(2)输入设备种类繁多,Linux输入系统是如何管理的?

  • ①繁杂的输入,如何处理成统一标准的输入事件?
  • ②多个事件时,驱动程序上传事件时如何告知APP已完整发送?
  • ③用户程序(APP)获得数据具体流程是怎么样的?

(3)APP可以以什么样的方式访问硬件?具体又是怎么实现的?

(4)以电容触摸屏为例,用tslib库使用输入设备。

  • tslib库的作用是什么?它有什么优点?
  • tslib库框架是什么样的?内部的机理是什么样的?
  • 如何使用tslib库实现应用程序的功能?---应用实战

接下来的文章内容,将详细的解答上面的问题。如果有所帮助,三连关注( ^_^ ),多多支持一下,大家一同进步呀!

一、输入系统

什么是输入系统?

        我们生活中有很多的输入设备,例如键盘、鼠标、遥控杆、触摸屏等等,用户通过这些设备和Linux系统进行数据交换。

         多个输入设备,是否能统一接口,并也在在驱动层面以及应用层面上统一,Linux系统为了实现上面的需求,设计了一套兼容所有输入设备的框架---即输入系统。

二、Linux输入系统框架

        如下图所示,Linux输入系统管理的方式具体分为三个阶段,①处理成统一标准的输入事件,上发到核心层②接收输入事件,转发给到事件层(event handler)③处理事件,提供用户空间访问接口

        

这里从硬件向上到APP涉及到的概念进行阐述:

(1)输入系统的驱动层

①这里有很多的硬件输入设备,会产生中断,发送数据到系统,那么系统如何去统一的处理, 处理成统一标准的输入事件?

这里的输入事件是一个struct input_event”结构体,查阅Linux内核文件:

D:\Linux-4.9.88.tar\Linux-4.9.88\include\uapi\linux input.h

 

 这里具体输入事件结构统一为time、type、code和value。

timeval结构体---表示事件的发生时间type:表示哪类事件code:表示该类事件下的那一个事件value:表示事件值。

 ②多个事件时,驱动程序上传事件时如何告知APP已完整发送?

驱动程序上报完一系列的数据后,会上报一个“ 同步事件 ”,表示数据上报完毕。  读到“同步事件”时,就知道已经读完了当前的数据。
同步事件也是一个 input_event 结构体,它的 type code value 三项都是 0

 (2)输入系统核心层

中转站的角色,核心层可以决定把输入事件转发给上面哪个 handler 来处理。有多种 handler,比如:evdev_handlerkbd_handlerjoydev_handler 等等。

最常用的是 evdev_handler:它只是把 input_event 结构体保存在内核buffer 等,APP来读取时就原原本本地返回。

(3)输入系统事件层

这里处理核心层上传的输入事件,之后给用户空间提供用户接口。

③在了解系统内部的结构后,用户程序(APP)是获得数据具体流程是怎么样的?

  1. APP发起读操作,若无数据则休眠
  2. 用户操作设备,硬件上产生中断
  3. 输入系统驱动层对应的驱动程序处理中断。
  4. 核心层将输入事件转发到相应的handler处理,最常用的evdev_handler。
  5. APP正在等待数据时,evdev_handler会把它唤醒,这样APP就可以获得数据。

这里APP获得数据的方法有2种,一种是直接访问设备节点,或者通过tslib、libinput这类库来间接访问设备节点。

好用的调试命令:

//查看设备节点,有什么事件ls /dev/input/* -l//获取与event对应的相关设备信息cat /proc/bus/input/devices
//使用命令读取数据(以触摸屏为例)hexdump /dev/input/event1

三、APP访问硬件的方式

APP可以以什么样的方式访问硬件?

APP访问硬件的方式有四种:查询方式、休眠-唤醒方式、POLL/SELECT方式以及异步通知方式。

方式机理
查询老板时不时来打扰你
休眠-唤醒平时躺着不做事,老板叫了之后干活
POLL/SELECT定个闹钟,时间到了就干活或者老板叫你时干活
异步通知自己在干一些活,老板来叫你时干老板交代的活

上面的方式,不分优劣,都有其应用的场景,那么具体的方法实现是怎么样的?

(1)查询方式、休眠-唤醒

区别
查询方式

APP调用open函数时,传入“O_NONBLOCK”---非阻塞

APP调用read函数时,如果驱动程序中有数据,那么APP的函数会返回数据,否则立刻返回错误。

休眠-唤醒

APP调用open函数时,不传入“O_NONBLOCK”---阻塞

APP调用read函数时,如果驱动程序中有数据,那么APP的函数会返回数据;没有则APP就会在内核态休眠。

具体示例:

#include <linux/input.h>#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <unistd.h>
#include <poll.h>#include <stdio.h>
#include <string.h>/*01_get_input_info /dev/input/event1	对应触摸屏事件O_NONBLOCK(非阻塞方式)*/
int main(int argc, char **argv)
{int fd;int err;int len;int i;unsigned char byte;int bit;struct input_id id;unsigned int evbit[2];struct input_event event;/*Event Type*/char * ev_names[] ={"EV_SYN", 	"EV_KEY",	"EV_REL",	"EV_ABS",	"EV_MSC",	"EV_SW"	,	"NUll  ","NUll  ","NUll  ","NUll  ","NUll  ","EV_LED",	"EV_SND",	"NUll  ","EV_REP",	"EV_FF"	,	"EV_PWR",		};//阻塞、非阻塞方式的对比if(argc < 2){printf("Usage: %s <dev> [noblock]\n",argv[0]);return -1;}if(argc == 3 && !strcmp(argv[2],"noblock")){fd =  open(argv[1], O_RDWR | O_NONBLOCK);}else{fd =  open(argv[1], O_RDWR);}if(fd < 0){printf("Usage: %s <dev>\n",argv[0]);return -1;}//获取设备的信息err = ioctl(fd, EVIOCGID, &id);if(err == 0){printf("bustype = ox%x\n",id.bustype);printf("vendor  = ox%x\n",id.vendor );printf("product = ox%x\n",id.product);printf("version = ox%x\n",id.version);}//获取evbit,看设备支持什么事件len = ioctl(fd, EVIOCGBIT(0, sizeof(evbit)), &evbit);if(len > 0 && len <= sizeof(evbit)){printf("support evet type: ");for(i = 0; i <len; i++){byte = ((unsigned char*)evbit)[i];for(bit = 0; bit < 8; bit++){if(byte & (1 << bit)){printf("%s ", ev_names[i * 8 + bit]);}}}printf("\n");}while(1){len = read(fd, &event, sizeof(event));if(len == sizeof(event)){printf(" get event: type = 0x%x, code = 0x%x, value = 0x%x\n", event.type, event.code, event.value);}else{printf(" read error %d\n", len);}}return 0;}

实际效果: 

查询方式(非阻塞):

获取设备信息,打开设备节点,之后app读取,驱动程序无数据,会一直return error

 休眠唤醒(阻塞):

获取设备信息,打开设备节点,之后app读取,若无数据,会进入休眠状态,当点击触摸屏时,会返回数据。

(2)POLL/SELECT方式

POLL机制、SELECT机制是完全一样的,只是APP接口函数不一样。

在调用poll、select函数时传入"超时时间"。在这段时间内,条件合适时(比如有数据可读)就会立刻返回,否则等到“超时时间”结束时返回错误。

poll/select监测事件类型有多种,如下表所示:

具体示例:

#include <linux/input.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <unistd.h>
#include <poll.h>#include <stdio.h>
#include <string.h>/*01_get_input_read_poll/dev/input/event1	对应触摸屏事件*/
int main(int argc, char **argv)
{int fd;int err;int len;int ret;int i;unsigned char byte;int bit;struct input_id id;unsigned int evbit[2];struct input_event event;struct pollfd fds[1];nfds_t nfds = 1;/*Event Type*/char * ev_names[] ={"EV_SYN", 	"EV_KEY",	"EV_REL",	"EV_ABS",	"EV_MSC",	"EV_SW"	,	"NUll  ","NUll  ","NUll  ","NUll  ","NUll  ","EV_LED",	"EV_SND",	"NUll  ","EV_REP",	"EV_FF"	,	"EV_PWR",		};if(argc != 2){printf("Usage: %s <dev>\n",argv[0]);return -1;}fd =  open(argv[1], O_RDWR);if(fd < 0){printf("Usage: %s <dev>\n",argv[0]);return -1;}//获取设备的信息err = ioctl(fd, EVIOCGID, &id);if(err == 0){printf("bustype = ox%x\n",id.bustype);printf("vendor  = ox%x\n",id.vendor );printf("product = ox%x\n",id.product);printf("version = ox%x\n",id.version);}//获取evbit,看设备支持什么事件len = ioctl(fd, EVIOCGBIT(0, sizeof(evbit)), &evbit);if(len > 0 && len <= sizeof(evbit)){printf("support evet type: ");for(i = 0; i <len; i++){byte = ((unsigned char*)evbit)[i];for(bit = 0; bit < 8; bit++){if(byte & (1 << bit)){printf("%s ", ev_names[i * 8 + bit]);}}}printf("\n");}//POLL和SELECT方式读取输入数据,超时时间-5swhile(1){//想查询哪个文件(fd)fds[0].fd = fd;//想查询什么事件fds[0].events = POLLIN;//清除“返回事件”fds[0].revents = 0;ret = poll(fds, nfds, 5000);if(ret > 0){if(fds[0].revents == POLLIN){while(read(fd, &event, sizeof(event)) == sizeof(event)){printf(" get event: type = 0x%x, code = 0x%x, value = 0x%x\n", event.type, event.code, event.value);}}}else if(ret == 0){printf("time out\n");}else{printf("poll err\n");}}return 0;

实际效果:

(3)异步通知方式

异步通知机制是类似与单片机开发的中断。就是APP可以忙自己的事,当驱动程序有数据时它会主动给APP发信号,这时APP执行信号处理函数。

除了清楚上述简要的流程以及对象,还有一些具体问题需要解决。

  1. 驱动程序给APP发什么信号?----SIGIO(驱动常用信号)
  2. 怎么发信号?                         ---内核提供函数
  3. 信号处理函数和信号之间怎么挂钩:APP注册信号处理函数

①...\Linux-4.9.88\include\uapi\asm-generic signal.h中有很多信号:

 ②APP提供注册信号处理函数的同时,也要跟SIGIO挂钩,具体如法如下:

进一步的思考:

  • 内核有很多驱动,让哪一个驱动给app发SIGIO信号?
    • APP打卡驱动程序的设备节点
  • 驱动程序怎么知道要将发信号给现在这个APP?
    • APP把自己进程ID告诉驱动程序

 具体示例:

#include <linux/input.h>#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <unistd.h>
#include <signal.h> 
#include <sys/types.h>
#include <fcntl.h>#include <stdio.h>
#include <string.h>int fd;//信号处理函数
void sig_func_handler(int sig)
{struct input_event event;while(read(fd, &event, sizeof(event)) == sizeof(event)){printf(" get event: type = 0x%x, code = 0x%x, value = 0x%x\n", event.type, event.code, event.value);}};
/*05_get_read_faycn /dev/input/event1	对应触摸屏事件*/
int main(int argc, char **argv)
{int err;int len;int ret;int i;int flags;int count = 0;unsigned char byte;int bit;struct input_id id;unsigned int evbit[2];/*Event Type*/char * ev_names[] ={"EV_SYN", 	"EV_KEY",	"EV_REL",	"EV_ABS",	"EV_MSC",	"EV_SW"	,	"NUll  ","NUll  ","NUll  ","NUll  ","NUll  ","EV_LED",	"EV_SND",	"NUll  ","EV_REP",	"EV_FF"	,	"EV_PWR",		};if(argc != 2){printf("Usage: %s <dev>\n",argv[0]);return -1;}/*注册信号处理函数*/signal(SIGIO, sig_func_handler);/*打开驱动程序*/fd =  open(argv[1], O_RDWR);if(fd < 0){printf("Usage: %s <dev>\n",argv[0]);return -1;}//获取设备的信息err = ioctl(fd, EVIOCGID, &id);if(err == 0){printf("bustype = ox%x\n",id.bustype);printf("vendor  = ox%x\n",id.vendor );printf("product = ox%x\n",id.product);printf("version = ox%x\n",id.version);}//获取evbit,看设备支持什么事件len = ioctl(fd, EVIOCGBIT(0, sizeof(evbit)), &evbit);if(len > 0 && len <= sizeof(evbit)){printf("support evet type: ");for(i = 0; i <len; i++){byte = ((unsigned char*)evbit)[i];for(bit = 0; bit < 8; bit++){if(byte & (1 << bit)){printf("%s ", ev_names[i * 8 + bit]);}}}printf("\n");}/*把APP的进程号告诉驱动程序*/fcntl(fd, F_SETOWN, getpid());/*使能"异步通知"*/flags = fcntl(fd, F_GETFL);fcntl(fd, F_SETFL, flags | FASYNC);while(1){printf("main loop count = %d\n", count++);sleep(2);}return 0;}

实际效果:

四、tslib库框架

(1)电容屏简述

电容屏中有一个控制芯片,它会周期性产生驱动信号,接收电极接收到信号,并可测量电荷大小。当电容屏被按下时,相当于引入新的电容,从而影响了接收电极接收到的电荷大小。主控芯片根据电荷大小即可计算触点位置。

电容触摸屏数据分析,对开发板上电容屏对应的设备节点/dev/input/event1,执行以下的命令:

hexdump /dev/input/event1

①一个手指点击触摸屏得到的:

② 两个手指点击触摸屏得到的:

(2)tslib库的用处

tslib库的作用是什么?它有什么优点?

我们可以看到,点击触摸屏时会有很多的事件,我们去做过滤和处理是不方便的。

tslib是一个触摸屏的开源库,可以使用它来访问触摸屏设备,可以给输入设备添加各种“filter”(过滤库,就是各种处理)。

(3)tslib框架分析

tslib库框架是什么样的?内部的机理是什么样的?

tslib的框架如图所示:

 tslib的主要代码有:

  • src/ 接口函数
    • ts_setup.c
    • ts_open.c
    • ts_config.c
  • plugins/ 模块module,以下的都是一个模块
    • linear.c
    • dejitter.c
    • pthres.c
    • input_raw.c     
  • tests/ 测试程序
    • ts_test.c
    • ts_test_mt.c
    • ts_print.c
    • ts_print_mt.c

分析整个tslib框架,参照示例程序(ts_test.cts_test_mt.c),用于单点触摸屏以及多点触摸屏。tslib的运行流程如下:

  • 1.调用ts_open,打开设备节点,构造出tsdev结构体。这个结构体的内容如下:
  • 2.调用ts_config,读取配置文件的处理,对于所有的模块,都会插入链表表头。module和module_raw对应tsdev结构体里不同的链表list、list_raw。
  • 3.递归调用各个模块,input_raw→pthres→dejitter→linear模块,对从设备节点获得的原始数据进行数据处理,返回最终数据。下图就是递归的过程。

所以主体就调用三个函数:ts_setup、ts_read或ts_readmt、ts_close。

五、基于tslib的测试程序:

如何使用tslib库实现应用程序的功能?

(1)交叉编译tslib库

//配置交叉编译工具链复制时注意检查哈,看是否一致)

export ARCH=arm
export CROSS_COMPILE=arm-linux-gnueabihf-

export PATH=$PATH:/home/book/100ask_imx6ull-sdk/ToolChain/gcc-linaro-6.2.1-2016.11-x86_64_arm-linux-gnueabihf/bin

//tslib库解压

cp /home/book/01_all_series_quickstart/04_嵌入式Linux应用开发基础知识/source/11_input/02_tslib/tslib-1.21.tar.xz ./

tar xJf tslib-1.21.tar.xz

//交叉编译万能命令

cd tslib-1.21

./configure --host=arm-linux-gnueabihf --prefix=/

make

make install DESTDIR=$PWD/tmp

//把头文件、库文件放到工具链目录下

cd tslib-1.21/tmp/

cp include/* /home/book/100ask_imx6ull-sdk/ToolChain/gcc-linaro-6.2.1-2016.11-x86_64_arm-linux-gnueabihf/bin/../arm-linux-gnueabihf/libc/usr/include

cp -d lib/*so* /home/book/100ask_imx6ull-sdk/ToolChain/gcc-linaro-6.2.1-2016.11-x86_64_arm-linux-gnueabihf/bin/../arm-linux-gnueabihf/libc/usr/lib/

(2)板子上测试编译

//复制文件到nfs挂载的文件夹nfs_rootfs里

cp -r  ~/tslib-1.21/*  ~/nfs_rootfs

//板子上将文件复制到lib、bin和etc上

cp /mnt/tslib-1.21/tmp/lib/*so* -d /lib

cp /mnt/tslib-1.21/tmp/bin/* /bin

cp /mnt/tslib-1.21/tmp/etc/ts.conf -d /etc

cp /mnt/tslib-1.21/tmp/lib/ts -rf /lib

//关闭默认的qt GUI程序(以实际为准),打开/etc/init.d/查看 qtGUI程序名

//重新开启的话,就将将相应的文件移回去

mv /etc/init.d/S99myirhmi2 /root

reboot

//测试

ts_test_mt

测试结果:

 六、基于tslib的应用实战:

 实现一个程序,不断打印2个触点的距离

触摸屏可能支持多个触点,比如5个,tslib为了简化处理,即使只有两个触点,ts_read_mt函数也会返回五个触点的数据。

驱动程序中使用slot、tracing_id来标识一个触点,当tracing_id等于-1时,标识这个触点被松开了。

所以可以根据这个标识来判断数据是否有效,所以当有两个触点有效时,就打印它俩之间的距离。

核心函数:ts_read_mt

四个参数:tsdev结构体、max_slots(最大点数)、ts_sample_mt结构体(存数据)、nr

 

 具体示例:

根据第四部分的内容、上述的思路以及ts_test_mt.c示例程序,完成程序的编写。

#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <signal.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <getopt.h>#include <linux/input.h>#include <sys/ioctl.h>#include <tslib.h>int distance(struct ts_sample_mt *point1, struct ts_sample_mt *point2)
{int x = point1->x - point2->x;int y = point1->y - point2->y;return x*x + y*y;
}int main(int argc, char **argv)
{struct tsdev *ts;int i;int ret;//定义新旧触点sample结构体struct ts_sample_mt **samp_mt;struct ts_sample_mt **pre_samp_mt;int max_slots;int point_pressed[20];struct input_absinfo slot;int touch_cnt = 0;//阻塞方式ts = ts_setup(NULL, 0);if (!ts){printf("ts_setup err\n");return -1;}//读取设备节点,获取属性---同时支持多少个触点,得到max_slotsif (ioctl(ts_fd(ts), EVIOCGABS(ABS_MT_SLOT), &slot) < 0) {perror("ioctl EVIOGABS");ts_close(ts);return errno;}max_slots = slot.maximum + 1 - slot.minimum;//参照测试程序初始samp_mt和pre_samp_mt结构体数组samp_mt = malloc(sizeof(struct ts_sample_mt *));if (!samp_mt) {ts_close(ts);return -ENOMEM;}samp_mt[0] = calloc(max_slots, sizeof(struct ts_sample_mt));if (!samp_mt[0]) {free(samp_mt);ts_close(ts);return -ENOMEM;}pre_samp_mt = malloc(sizeof(struct ts_sample_mt *));if (!pre_samp_mt) {ts_close(ts);return -ENOMEM;}pre_samp_mt[0] = calloc(max_slots, sizeof(struct ts_sample_mt));if (!pre_samp_mt[0]) {free(pre_samp_mt);ts_close(ts);return -ENOMEM;}for ( i = 0; i < max_slots; i++)pre_samp_mt[0][i].valid = 0;while (1){//第一步:读取触点数据ret = ts_read_mt(ts, samp_mt, max_slots, 1);if (ret < 0) {printf("ts_read_mt err\n");ts_close(ts);return -1;}//第二步:判断是否更新,将新数据拷贝到旧数据里for (i = 0; i < max_slots; i++){if (samp_mt[0][i].valid){memcpy(&pre_samp_mt[0][i], &samp_mt[0][i], sizeof(struct ts_sample_mt));}}//第三步:判断是否有两个触点,如果是两个,则执行打印touch_cnt = 0;for (i = 0; i < max_slots; i++){if (pre_samp_mt[0][i].valid && pre_samp_mt[0][i].tracking_id != -1)point_pressed[touch_cnt++] = i;}if (touch_cnt == 2){printf("distance: %08d\n", distance(&pre_samp_mt[0][point_pressed[0]], &pre_samp_mt[0][point_pressed[1]]));}}return 0;
}

实际效果:

//交叉编译
arm-buildroot-linux-gnueabihf-gcc -o mt_cal_distance mt_cal_distance.c -lts//复制到nfs挂载文件 nfs_rootfs
cp mt_cal_distance ~/nfs_rootfs

板子上运行程序,两个手指放上去之后打印出结果: 

这篇关于【Linux】输入系统详述 + 触摸屏应用实战(tslib)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/843252

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

linux-基础知识3

打包和压缩 zip 安装zip软件包 yum -y install zip unzip 压缩打包命令: zip -q -r -d -u 压缩包文件名 目录和文件名列表 -q:不显示命令执行过程-r:递归处理,打包各级子目录和文件-u:把文件增加/替换到压缩包中-d:从压缩包中删除指定的文件 解压:unzip 压缩包名 打包文件 把压缩包从服务器下载到本地 把压缩包上传到服务器(zip

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

hdu1394(线段树点更新的应用)

题意:求一个序列经过一定的操作得到的序列的最小逆序数 这题会用到逆序数的一个性质,在0到n-1这些数字组成的乱序排列,将第一个数字A移到最后一位,得到的逆序数为res-a+(n-a-1) 知道上面的知识点后,可以用暴力来解 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#in