nope-nerf代码复现

2024-03-24 23:50
文章标签 代码 复现 nerf nope

本文主要是介绍nope-nerf代码复现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

代码地址

GitHub - ActiveVisionLab/nope-nerf: (CVPR 2023) NoPe-NeRF: Optimising Neural Radiance Field with No Pose Prior

进行环境配置(时间有点久,耐心等待)

git clone https://github.com/ActiveVisionLab/nope-nerf.git
cd nope-nerf
conda env create -f environment.yaml
conda activate nope-nerf

建议先更新一下conda

conda update -n base -c defaults conda

数据预处理

支持三种数据集

1.Tanks数据集

每个场景都包含图像、DPT 和 COLMAP 姿势的单眼深度估计。点击链接会下载压缩包,然后在nope-nerf项目新建data文件夹,把压缩包解压到里面。

2.NeRF LLFF 数据集

提供 NeRF LLFF 数据集的配置文件。可以点击链接下载数据集并将其解压缩到data目录中。

3.自定义数据集

想使用自己的图像序列和自定义相机内部函数,则需要将intrinsics.npz文件添加到场景目录中。配置文件的一个示例是configs/Test/images.yaml(将自己的数据添加到data/Test/images目录中)。

单目图像的深度图生成:

单目深度图生成:可以先从Vision Transformers for Dense Prediction提供的这个链接下载预训练的DPT模型到DPT目录。点击this link 跳转到链接下载。

生成深度图需要修改configs/preprocess.yaml文件里面的'path'和,‘scene',

然后运行指令:

python preprocess/dpt_depth.py configs/preprocess.yaml

报错:

VIDIA GeForce RTX 3090 with CUDA capability sm_86 is not compatible with the current PyTorch installation. The current PyTorch install supports CUDA capabilities sm_37 sm_50 sm_60 sm_61 sm_70 sm_75 compute_37. If you want to use the NVIDIA GeForce RTX 3090 GPU with PyTorch, please check the instructions at https://pytorch.org/get-started/locally/ warnings.warn(incompatible_device_warn.format(device_name, capability, " ".join(arch_list), device_name))

这属于幸福的烦恼:显卡算力太高而pytorch版本太低不支持

RTX 3090 使用的 CUDA 计算能力是 sm_86,而当前的 PyTorch 安装只支持 sm_37, sm_50, sm_60, sm_61, sm_70, sm_75, compute_37 这些计算能力。

解决这个问题的方法是升级 PyTorch 到一个支持 sm_86 计算能力的版本。

查看cuda版本和pytorch版本,cuda=11.3,pytorch=1.7

上pytorch官网查看(安装)最新版本的cuda以及对应的pytorch

直接pip安装:

pip install torch==1.10.0+cu111 torchvision==0.11.0+cu111 torchaudio==0.10.0 -f https://download.pytorch.org/whl/torch_stable.html

参考链接:幸福的烦恼:显卡算力太高而pytorch版本太低不支持

继续运行生成深度图指令,生成dpt文件夹里面有.npz的深度文件和深度图

可以看出生成深度图质量还不错:

 

训练

 从头开始训练新模型:

python train.py configs/Tanks/Francis.yaml

 可以在其中替换configs/Tanks/Francis.yaml其他配置文件。

报错:

Traceback (most recent call last): File "/media/root/f34190af-0449-4d32-87e3-0a55e032ed3b/LT/nope-nerf/train.py", line 12, in <module> from torch.utils.tensorboard import SummaryWriter File "/home/dy/anaconda3/envs/nope-nerf/lib/python3.9/site-packages/torch/utils/tensorboard/__init__.py", line 4, in <module> LooseVersion = distutils.version.LooseVersion AttributeError: module 'distutils' has no attribute 'version' 去报错目录打开__init__.py文件,注释以下代码:

 问题解决,开始训练

报错:CUDA out of memory.

RuntimeError: CUDA out of memory. Tried to allocate 2.91 GiB (GPU 0; 23.70 GiB total capacity; 1.45 GiB already allocated; 1.42 GiB free; 1.51 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF

自己去找一下多卡运行的代码修改一下train.py文件

 

 可以运行啦!

可以使用tensorboard在http://localhost:6006上监控训练过程:

进入out/Tanks/Francis/logs/目录,打开终端,进入虚拟环境,输入以下指令,打开生成的网址

tensorboard --logdir ./

可以进行可视化啦!

 

 评估

1.评估图像质量和深度:

python evaluation/eval.py configs/Tanks/Francis.yaml

评估深度:添加--depth. 请注意,需要自己添加地面真实深度图。

2.评估姿势:

python evaluation/eval_poses.py configs/Tanks/Francis.yaml

 要可视化估计和地面真实轨迹:添加--vis

可视化

1.新视图合成

python vis/render.py configs/Tanks/Francis.yaml

在out文件夹生成rendring的视角和深度图

img

depth

 2.位姿可视化(估计位姿)

python vis/vis_poses.py configs/Tanks/Francis.yaml

 

这篇关于nope-nerf代码复现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/843208

相关文章

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

CSS3中使用flex和grid实现等高元素布局的示例代码

《CSS3中使用flex和grid实现等高元素布局的示例代码》:本文主要介绍了使用CSS3中的Flexbox和Grid布局实现等高元素布局的方法,通过简单的两列实现、每行放置3列以及全部代码的展示,展示了这两种布局方式的实现细节和效果,详细内容请阅读本文,希望能对你有所帮助... 过往的实现方法是使用浮动加

JAVA调用Deepseek的api完成基本对话简单代码示例

《JAVA调用Deepseek的api完成基本对话简单代码示例》:本文主要介绍JAVA调用Deepseek的api完成基本对话的相关资料,文中详细讲解了如何获取DeepSeekAPI密钥、添加H... 获取API密钥首先,从DeepSeek平台获取API密钥,用于身份验证。添加HTTP客户端依赖使用Jav

Java实现状态模式的示例代码

《Java实现状态模式的示例代码》状态模式是一种行为型设计模式,允许对象根据其内部状态改变行为,本文主要介绍了Java实现状态模式的示例代码,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来... 目录一、简介1、定义2、状态模式的结构二、Java实现案例1、电灯开关状态案例2、番茄工作法状态案例

nginx-rtmp-module模块实现视频点播的示例代码

《nginx-rtmp-module模块实现视频点播的示例代码》本文主要介绍了nginx-rtmp-module模块实现视频点播,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录预置条件Nginx点播基本配置点播远程文件指定多个播放位置参考预置条件配置点播服务器 192.

CSS自定义浏览器滚动条样式完整代码

《CSS自定义浏览器滚动条样式完整代码》:本文主要介绍了如何使用CSS自定义浏览器滚动条的样式,包括隐藏滚动条的角落、设置滚动条的基本样式、轨道样式和滑块样式,并提供了完整的CSS代码示例,通过这些技巧,你可以为你的网站添加个性化的滚动条样式,从而提升用户体验,详细内容请阅读本文,希望能对你有所帮助...

深入解析Spring TransactionTemplate 高级用法(示例代码)

《深入解析SpringTransactionTemplate高级用法(示例代码)》TransactionTemplate是Spring框架中一个强大的工具,它允许开发者以编程方式控制事务,通过... 目录1. TransactionTemplate 的核心概念2. 核心接口和类3. TransactionT