H.264 视频编码器 变换编码分析

2024-03-24 23:38

本文主要是介绍H.264 视频编码器 变换编码分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

H.264 视频编码器 变换编码分析

一. 变换编码分为两部分:变换,量化,以及在之后的重建环路中对应的反量化和反变换。
接下来对各部分进行分析
二. 变换

根据残差数据的类型不同,H264 High Profile中会使用到4种不同的变换:

  1. 采用 Intra4x4 预测模式和 Intra16x16 预测模式得到的亮度分量预测残差,使用4x4离散余弦变换(DCT);
  2. 采用 Intra8x8 预测模式得到的亮度分量预测残差使用8x8离散余弦变换(DCT);
  3. 采用 Inter 预测模式得到的亮度分量预测残差,如果预测模式块大小,小于等于8x8,则使用4x4离散余弦变换,否则编码器要在4x4和8x8离散余弦变换之间进行选择。
  4. 色度分量的预测残差全部使用4x4离散余弦变换。
  5. 其中,4x4哈达玛变换用于 Intra16x16 预测残差直流分量的二次变换;2x2哈达玛变换用于色度分量直流系数的二次变换
三. 原始数学原理:DCT变换原理

DCT变换是一种正交变换,因为具有良好的去相关性和压缩效果,并且有快速算法可以实现,因此在图像编码中被广泛使用。

但是由于变换矩阵C的变换系数中存在无理数,在编解码的计算过程中计算结果会带来误差,反变换和变换之前的结果会不一样带来误差。

在H. 264编码标准中,进行了整数变换的操作,并且可以不使用乘法操作,其中的一部分变换计算合并到量化过程中去。

四. H.264中的整数余弦变换

整数余弦变换的对象:

  1. 4x4子宏块的亮度分量
  2. 4x4子宏块的色度分量
1.变换

也就是说,4x4的残差亮度书看剧和2x2的残差色度数据需要进行二维变换,使得高频分量大多数为零,从而达到和DCT变换相似的数据压缩效果。
在这里插入图片描述
其中,Ef 矩阵中a=1/2,b=√(2/5).
这里的 圈乘 运算符表示对同一位置的两个矩阵元素做一次的乘法操作。这一部分运算被合并到量化和反量化中,确保了整数余弦变换和DCT变换有相似的压缩效果。因此在编码器的标准中,变换过程只包括括号内的操作:
在这里插入图片描述

2.反变换

在H.264标准中,反变换矩阵Cinv 并不是变换矩阵Cf的逆矩阵,而是进一步做了整数化处理。因此需要其他运算来保证反变换的正确性。在H264标准中这部分也同样被合并到量化,反量化的过程中完成,这样保证在反变换的过程中同样只使用加法和移位操作。

反变换矩阵Cinv如下:
在这里插入图片描述

3. 分层的二维整数余弦变换:直流分量增加hardmard变换

首先,对于4x4子宏块的残差做二维整数余弦变换
其次,对8x8色度块的直流分量和帧内预测的16x16宏块中的16个子宏块的直流分量进行hardmard变换。如下图所示:
在这里插入图片描述
这时由于在8x8的色度块和帧内预测模式的16x16亮度快中,每个子宏块的直流分量之间还有很强的相关性。对于这些子宏块的支流分量还要进行Hardmard变换来提高数据的压缩效率。

8x8色度块和帧内预测16x16亮度快的直流分量的hradmard变换矩阵分别为:
在这里插入图片描述
Hardmard逆变换矩阵和变换矩阵相同。

4. 针对高清晰视频领域的应用,提出对亮度快使用更大尺寸的整数余弦变换:8x8变换块

相对于4x4数据块的整数比那还,新的建议增加了8x8数据块使用整数余弦变换。与此对应,新的建议中,预测模式和量化部分也做了部分修改。

8x8数据块的整数余弦变换:
首先可以提高数据压缩的性能,因为在实际中8x8数据块的数据相关性比4x4的数据块相关性要高,因此压缩性能要更好,可以减少大约10%的比特率。
其次,8x8数据块的整数余弦变换有利于图像中的频率分量,可以提高图像显示细节。

这篇关于H.264 视频编码器 变换编码分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/843164

相关文章

流媒体平台/视频监控/安防视频汇聚EasyCVR播放暂停后视频画面黑屏是什么原因?

视频智能分析/视频监控/安防监控综合管理系统EasyCVR视频汇聚融合平台,是TSINGSEE青犀视频垂直深耕音视频流媒体技术、AI智能技术领域的杰出成果。该平台以其强大的视频处理、汇聚与融合能力,在构建全栈视频监控系统中展现出了独特的优势。视频监控管理系统EasyCVR平台内置了强大的视频解码、转码、压缩等技术,能够处理多种视频流格式,并以多种格式(RTMP、RTSP、HTTP-FLV、WebS

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

MOLE 2.5 分析分子通道和孔隙

软件介绍 生物大分子通道和孔隙在生物学中发挥着重要作用,例如在分子识别和酶底物特异性方面。 我们介绍了一种名为 MOLE 2.5 的高级软件工具,该工具旨在分析分子通道和孔隙。 与其他可用软件工具的基准测试表明,MOLE 2.5 相比更快、更强大、功能更丰富。作为一项新功能,MOLE 2.5 可以估算已识别通道的物理化学性质。 软件下载 https://pan.quark.cn/s/57

衡石分析平台使用手册-单机安装及启动

单机安装及启动​ 本文讲述如何在单机环境下进行 HENGSHI SENSE 安装的操作过程。 在安装前请确认网络环境,如果是隔离环境,无法连接互联网时,请先按照 离线环境安装依赖的指导进行依赖包的安装,然后按照本文的指导继续操作。如果网络环境可以连接互联网,请直接按照本文的指导进行安装。 准备工作​ 请参考安装环境文档准备安装环境。 配置用户与安装目录。 在操作前请检查您是否有 sud

线性因子模型 - 独立分量分析(ICA)篇

序言 线性因子模型是数据分析与机器学习中的一类重要模型,它们通过引入潜变量( latent variables \text{latent variables} latent variables)来更好地表征数据。其中,独立分量分析( ICA \text{ICA} ICA)作为线性因子模型的一种,以其独特的视角和广泛的应用领域而备受关注。 ICA \text{ICA} ICA旨在将观察到的复杂信号

【软考】希尔排序算法分析

目录 1. c代码2. 运行截图3. 运行解析 1. c代码 #include <stdio.h>#include <stdlib.h> void shellSort(int data[], int n){// 划分的数组,例如8个数则为[4, 2, 1]int *delta;int k;// i控制delta的轮次int i;// 临时变量,换值int temp;in

三相直流无刷电机(BLDC)控制算法实现:BLDC有感启动算法思路分析

一枚从事路径规划算法、运动控制算法、BLDC/FOC电机控制算法、工控、物联网工程师,爱吃土豆。如有需要技术交流或者需要方案帮助、需求:以下为联系方式—V 方案1:通过霍尔传感器IO中断触发换相 1.1 整体执行思路 霍尔传感器U、V、W三相通过IO+EXIT中断的方式进行霍尔传感器数据的读取。将IO口配置为上升沿+下降沿中断触发的方式。当霍尔传感器信号发生发生信号的变化就会触发中断在中断

《x86汇编语言:从实模式到保护模式》视频来了

《x86汇编语言:从实模式到保护模式》视频来了 很多朋友留言,说我的专栏《x86汇编语言:从实模式到保护模式》写得很详细,还有的朋友希望我能写得更细,最好是覆盖全书的所有章节。 毕竟我不是作者,只有作者的解读才是最权威的。 当初我学习这本书的时候,只能靠自己摸索,网上搜不到什么好资源。 如果你正在学这本书或者汇编语言,那你有福气了。 本书作者李忠老师,以此书为蓝本,录制了全套视频。 试