防止大数据“杀熟”

2024-03-24 21:20
文章标签 数据 防止 杀熟

本文主要是介绍防止大数据“杀熟”,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大数据119


随着Internet技术的不断发展,大数据的使用变得越来越普遍。我们随时随地享受大数据带来的便利,但其负面影响也随之而来。近日,网上购物 等网上电子商务平台在线购票等网上购票已遭遇“杀戮”局面。


大数据“查杀”意味着运营商使用大数据来收集消费者信息,分析他们的消费偏好 消费习惯 收入水平和其他信息,并以不同的价格向不同的消费者出售相同的商品或服务。更有利可图的行为。有三种不同形式的“杀戮”。主要有三种表现:一种是基于用户使用的不同设备,价格不同,例如,Apple用户和Android用户的价格不同;另一个是根据用户消费的位置而不同。例如,远离商场的用户的定价更高;第三,价格根据用户消费的频率进行区分。一般来说,消费频率越高,价格容忍度越强。


目前,中国的“消费者权益保护法”尚未明确将大数据的“杀戮”行为纳入监管范围。但是,“消费者保护法”第8条规定,消费者有权了解购买或使用商品的真相。与此同时,第20条明确规定,经营者有真实而全面的义务。在“杀死”大数据时,消费者很难知道商品或服务的实际价格。只有运营商支付最多的价格是 这是运营商在分析他的个人信息后指定的。这严重侵犯了消费者的知情权。


“消费者权益保护法”第10条还规定,消费者有权根据公平交易条件获得公平交易结果,主要是因为消费者有权以合理的价格购买商品或获得服务。使用大数据“杀死”,运营商不会根据货物本身的性质对货物定价,但在相同交易条件下消费者的价格是不同的。行为极大地侵犯了公平贸易权利的内在精神和实质。


此外,“消费者保护法”第26条规定,经营者应以重要方式提请消费者注意对其有重大利益的格式条款的内容,并且不得作出不公平的不公平条款。消费者 因此,即使消费者同意运营商在“服务协议”中使用其个人信息,运营商仍必须承担保护消费者个人信息的义务。


鉴于在实践中“杀死”大数据的现象,没有必要引入相关的法律法规来规范这种行为,并为受害的消费者提供权利保护渠道。


中安威士 :保护核心数据,捍卫网络安全


来源:网络收集


来自 “ ITPUB博客 ” ,链接:http://blog.itpub.net/69914889/viewspace-2648026/,如需转载,请注明出处,否则将追究法律责任。

转载于:http://blog.itpub.net/69914889/viewspace-2648026/

这篇关于防止大数据“杀熟”的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/842821

相关文章

Nacos集群数据同步方式

《Nacos集群数据同步方式》文章主要介绍了Nacos集群中服务注册信息的同步机制,涉及到负责节点和非负责节点之间的数据同步过程,以及DistroProtocol协议在同步中的应用... 目录引言负责节点(发起同步)DistroProtocolDistroSyncChangeTask获取同步数据getDis

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

pandas数据过滤

Pandas 数据过滤方法 Pandas 提供了多种方法来过滤数据,可以根据不同的条件进行筛选。以下是一些常见的 Pandas 数据过滤方法,结合实例进行讲解,希望能帮你快速理解。 1. 基于条件筛选行 可以使用布尔索引来根据条件过滤行。 import pandas as pd# 创建示例数据data = {'Name': ['Alice', 'Bob', 'Charlie', 'Dav