罗盘-贝壳流量分析平台

2024-03-24 15:20

本文主要是介绍罗盘-贝壳流量分析平台,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

1. 背景

随着贝壳的不断发展,特别是今年年初专门成立了增长线,数据化思维和精细化运营的诉求越来越强烈。各个业务方急需了解自己系统的流量情况,从数据出发优化自己的产品,从而留住用户提高转化;而作为公司高层需要知道集团的整体流量情况,特别是比较核心的月活、商机转化、用户留存和渠道推广等情况,及时作出战略部署和调整,保证公司保持高效稳定的增长。在这样的大背景下我们搭建了一套流量分析平台-罗盘,为集团和各个业务方提供统一、权威的流量数据出口。

2. 面临的问题

  • 日志埋点格式不统一,历史存在多套埋点标准,有些业务方还有自己的日志埋点规范,如何统一标准,兼容历史数据是我们面临的第一个问题;
  • 统计口径不一致,每个业务都有自己的统计口径,数据互相不认可,而从集团层面很难拿到整体的流量数据;
  • 每天TB级别上报数据,各种复杂的数据分析场景,在很多场景下需要保存明细数据才能分析,如何存储明细数据和分析数据是系统架构设计的一大挑战。

3. 总体设计方案

在这里插入图片描述
从纵向看分为数据需求、数据接入、数据处理、数据存储和数据分析五个过程,从横向能看到数据在每个环节中具体的流转过程,下面从纵向的角度展开介绍一下每个过程。

4. 数据需求

数据需求是整个环节的第一步,首先需要有一套全公司标准的埋点规范,并通过公司高层的推动下在各个业务方落地,而规范的落地需要有系统的支撑,埋点管理模块承担了所有埋点信息的申请、埋点文档的生成,辅助业务实现标准化的埋点。

5. 数据接入

主要负责快速接收业务方根据埋点需求上报的日志数据,其中Dig服务接收APP、PC、M站发送数据,通过lua程序将数据落地到kafka,对于APP端为了性能和节省流量会批量打包上传日志文件,Dig还会负责日志文件的解压。

6. 数据处理

  • 首先通过spark任务消费Dig落地的kafka数据,做格式的清洗、历史日志格式的转换、字段的解析,并根据分析需求衍生出更多的维度,比如手机型号、品牌等,还会做日志数据格式的校验,对于不合法的数据进行统计后落地到 DB 中提供查看错误信息;
  • spark清洗后的kafka数据会通过Hangout组建实时落地到ClickHouse提供实时数据分析的能力,Hangout是类似Logstash的日志收集组件,目前支持秒级的数据实时写入;
  • spark清洗的数据也会落地到HDFS,用于离线仓库处理,罗盘目前能解决大部分公共的分析需求,但是对于部分个性化的需求还是需要通过hive sql来解决,同时对于渠道相关的数据目前还无法做到实时处理,目前是通过离线跟渠道数据关联后每天导入到ClickHouse,并会覆盖昨天的实时数据,这也是大数据比较经典实时+离线的Lambda架构。

7. 数据存储

在做罗盘架构设计选型时最核心的就是如何选择一个适合自己的OLAP引擎,我们对比了Spark、Kylin、Druid、Kudu+Impala、ClickHouse等分析引擎的优劣最终选择了ClickHouse,主要基于以下几个方面:

  • 对业务的支撑能力,ClickHouse具备非常强大的分析函数以及自定义函数的支持,可以很好支持罗盘各种场景下的分析功能;
  • 支持SQL查询,业务实现比较简单;
  • 超强的查询性能和数据压缩能力,在真实数据测试时10亿的数据量下简单查询在毫秒级,分组加聚合统计查询在秒级,在大批量的实时写入下并不会影响查询性能;
  • 在部分互联网公司已经有线上的应用案例,比如新浪微博、瓜子二手车等。

8. 数据分析

基于ClickHouse我们最终实现了5大分析能力:

  • 数据概览
    • 可以让集团高层和业务方直观的查看核心流量指标数据,具体效果如图所示:

      在这里插入图片描述

  • 事件分析
    • 可以在任意维度加指标组合来分析业务的PV、UV等数据,该部分底层实现主要是一些复杂的聚合SQL,具体效果如图所示:
      在这里插入图片描述
  • 漏斗分析
    • 分析指定步骤在指定时间周期内每个步骤下用户转化情况,其中每个步骤还可以设置不同的筛选条件,并且支持按照维度分组对比查看数据;该部分分析比较复杂,我们基于ClickHouse自己实现了一个带时间滑动窗口子序列查找算法的自定义函数,通过Patch源码编译到ClickHouse引擎中,具体实现效果如图所示:

      在这里插入图片描述

  • 留存分析
    • 可以看到不同维度下用户每天的流失情况,具体效果如图所示:

      在这里插入图片描述

  • 路径分析
    • 可以看到用户在产品中完整访问路径,帮助用户找到产品关键路径,具体的实现主要通过ClickHouse中的groupArray函数将用户每个session下所有行为聚合成数组,然后根据行为发生的时间对行为做排序和过滤得到每个用户在session下的完整访问路径,具体效果如图所示:

      在这里插入图片描述

9. 埋点检测

为了方便业务方查看自己上报的日志数据,我们还提供了埋点实时检测的功能,通过实时消费kafka的数据让用户可以看到实时上报的数据格式,以及历史上报数据的情况,包括接收的数据量、错误数据量以及错误的详细信息,这个是埋点需求验收的关键环节,需要有PM或者QA的介入做埋点验收,保证上线后的数据质量。

10. 总结

目前罗盘接入了10+的业务线,还有更多的业务线正在接入中,每天6亿+实时数据写入,各种场景下秒级的查询能力。

11. 展望

随着公司业务的发展和更多业务方的数据接入,如何实现业务方快速数据接入、在更大数据量下数据存储和数据查询的优化需要我们不断的努力;在产品功能上深化各个场景下的分析能力,支持用户行为明细和用户分群等高级分析能力;在实现功能的同时将ClickHouse封装成一个公共的基础技术服务,能让其它业务系统方便的接入数据和使用数据,解决业务系统在海量数据存储和复杂查询上的痛点。

原文:罗盘-贝壳流量分析平台

这篇关于罗盘-贝壳流量分析平台的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/841992

相关文章

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

使用zabbix进行监控网络设备流量

《使用zabbix进行监控网络设备流量》这篇文章主要为大家详细介绍了如何使用zabbix进行监控网络设备流量,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录安装zabbix配置ENSP环境配置zabbix实行监控交换机测试一台liunx服务器,这里使用的为Ubuntu22.04(

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

锐捷和腾达哪个好? 两个品牌路由器对比分析

《锐捷和腾达哪个好?两个品牌路由器对比分析》在选择路由器时,Tenda和锐捷都是备受关注的品牌,各自有独特的产品特点和市场定位,选择哪个品牌的路由器更合适,实际上取决于你的具体需求和使用场景,我们从... 在选购路由器时,锐捷和腾达都是市场上备受关注的品牌,但它们的定位和特点却有所不同。锐捷更偏向企业级和专

Spring中Bean有关NullPointerException异常的原因分析

《Spring中Bean有关NullPointerException异常的原因分析》在Spring中使用@Autowired注解注入的bean不能在静态上下文中访问,否则会导致NullPointerE... 目录Spring中Bean有关NullPointerException异常的原因问题描述解决方案总结

python中的与时间相关的模块应用场景分析

《python中的与时间相关的模块应用场景分析》本文介绍了Python中与时间相关的几个重要模块:`time`、`datetime`、`calendar`、`timeit`、`pytz`和`dateu... 目录1. time 模块2. datetime 模块3. calendar 模块4. timeit

python-nmap实现python利用nmap进行扫描分析

《python-nmap实现python利用nmap进行扫描分析》Nmap是一个非常用的网络/端口扫描工具,如果想将nmap集成进你的工具里,可以使用python-nmap这个python库,它提供了... 目录前言python-nmap的基本使用PortScanner扫描PortScannerAsync异

Oracle数据库执行计划的查看与分析技巧

《Oracle数据库执行计划的查看与分析技巧》在Oracle数据库中,执行计划能够帮助我们深入了解SQL语句在数据库内部的执行细节,进而优化查询性能、提升系统效率,执行计划是Oracle数据库优化器为... 目录一、什么是执行计划二、查看执行计划的方法(一)使用 EXPLAIN PLAN 命令(二)通过 S