【漫漫科研路\CC++】CPLEX解SOCP问题

2024-03-24 14:58
文章标签 c++ 问题 科研 cplex 漫漫 socp

本文主要是介绍【漫漫科研路\CC++】CPLEX解SOCP问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

IBM CPLEX可以解SOCP问题,但是需要先将这个SOCP问题化为指定的格式。本文首先介绍SOCP问题,然后举例介绍如何将SOCP问题转化为CPLEX认可的输入格式并求解。

SOCP的介绍

关于SOCP问题的介绍,可以参考Boyd等人写的Convex Optimization 或者是维基百科的SOCP词条 。这里摘录Convex Optimization一书中关于SOCP的定义:

在这里插入图片描述

CPLEX求解SOCP问题

使用CPLEX求解SOCP问题,一般需要将问题转化为CPLEX可以识别的格式。CPLEX的例子ilosocpex1(位于安装目录的examples文件夹内,例如:C:\Program Files\IBM\ILOG\CPLEX_Enterprise_Server129\CPLEX_Studio\cplex\examples)给予了格式说明:
在这里插入图片描述
下面我们首先给一个直接可以使用CPLEX求解的例子,然后在此基础上考虑一个更一般的例子(需要变量替换来符合格式)。

一个简单的例子

在这里插入图片描述
如上图所示,q1, q2可以直接转化为前面提到的CPLEX认可格式。下面给出源代码如下(注意项目需要预先配置好,配置请见上一篇博文):

#include <cmath>
#include <string>
#include <iostream>
#include <ilcplex/ilocplex.h>ILOSTLBEGIN // import namespace std// Tolerance for testing KKT conditions.
#define TESTTOL 1e-9
// Tolerance for barrier convergence.
#define CONVTOL 1e-9//  A Simple Example//  Minimize//   obj: x1 + x2 + x3 + x4 + x5 + x6//  Subject To//   c1: x1 + x2      + x5      = 8//   c2:           x3 + x5 + x6 = 10//   q1: x1 >= |(x2, x3)| ---->>>>  q1: [ -x1^2 + x2^2 + x3^2 ] <= 0 and x1 >=0//   q2: x4 >= |x5|       ---->>>>  q2: [ -x4^2 + x5^2 ] <= 0 and x4 >=0//  Bounds//   x2 Free//   x3 Free//   x5 Free//   x6 Free//  Endstatic void
createmodel(IloModel& model, IloObjective &obj, IloNumVarArray &x,IloRangeArray &rngs, IloIntArray& cone)
{IloEnv env = model.getEnv();// Create variables.x.add(IloNumVar(env, 0, IloInfinity));x.add(IloNumVar(env, -IloInfinity, IloInfinity));x.add(IloNumVar(env, -IloInfinity, IloInfinity));x.add(IloNumVar(env, 0, IloInfinity));x.add(IloNumVar(env, -IloInfinity, IloInfinity));x.add(IloNumVar(env, -IloInfinity, IloInfinity));// Create objective function and immediately store it in return value.// obj = IloMinimize(env, x1 + x2 + x3 + x4 + x5 + x6);obj = IloMinimize(env, x[0]+x[1] + x[2] + x[3] + x[4] + x[5]);// Setup model.model.add(x[0] + x[1] + x[4]==8);model.add(x[2] + x[4] + x[5]==10);model.add(-x[0] * x[0] + x[1] * x[1] + x[2] * x[2]<=0);//equal to model.add(-x[3] * x[3] + x[4] * x[4]<=0), useful for lots of variablesdouble a[] = {0,0,0, -1,1 };IloExpr temp(env);for (IloInt i = 3; i < 5; i++){temp += a[i] * x[i] * x[i];}model.add(temp <= 0);temp.end();model.add(obj);
}int
main(void)
{IloEnv env;int retval = -1;try {// Create the model.IloModel model(env);IloCplex cplex(env);IloObjective obj(env);IloNumVarArray vars(env);IloRangeArray rngs(env);IloIntArray cone(env);createmodel(model, obj, vars, rngs, cone);// Extract model.cplex.extract(model);// Solve the problem. If we cannot find an _optimal_ solution then// there is no point in checking the KKT conditions and we throw an// exception.cplex.setParam(IloCplex::Param::Barrier::QCPConvergeTol, CONVTOL);if (!cplex.solve() || cplex.getStatus() != IloAlgorithm::Optimal)throw string("Failed to solve problem to optimality");IloNumArray vals_x(env);env.out() << "Solution status = " << cplex.getStatus() << endl;env.out() << "Solution value  = " << cplex.getObjValue() << endl;cplex.getValues(vals_x, vars);env.out() << "Values        = " << vals_x << endl;env.end();}catch (IloException &e) {cerr << "IloException: " << e << endl;if (env.getImpl())env.end();::abort();}catch (string& e) {cerr << e << endl;if (env.getImpl())env.end();::abort();}return retval;
}

运行结果如下图:
在这里插入图片描述

一个更一般的例子

在前面例子的基础上,我们只是改变了约束q1,使其更一般化,如下图所示:
在这里插入图片描述

为了将q1转化为合适的格式,我们使用变量替换 $x_7=x_1+x_2 $ 。因此只需在前面源代码中更改 createmodel 函数中的部分代码。为保持代码完整性,我们依旧给出完整的代码:

#include <cmath>
#include <string>
#include <iostream>
#include <ilcplex/ilocplex.h>ILOSTLBEGIN // import namespace std// Tolerance for testing KKT conditions.
#define TESTTOL 1e-9
// Tolerance for barrier convergence.
#define CONVTOL 1e-9//  A Simple Example//  Minimize//   obj: x1 + x2 + x3 + x4 + x5 + x6//  Subject To//   c1: x1 + x2      + x5      = 8//   c2:           x3 + x5 + x6 = 10//   q1: x1 + x2 >= |(x1, x2, x3)| ---->>>> q1:[-x7^2+x1^2+x2^2+x3^2]<=0 and x7=x1+x2>=0//   q2: x4 >= |x5|       ---->>>>  q2: [ -x4^2 + x5^2 ] <= 0 and x4 >=0//  Bounds//   x1 Free//   x2 Free//   x3 Free//   x5 Free//   x6 Free//  Endstatic void
createmodel(IloModel& model, IloObjective &obj, IloNumVarArray &x,IloRangeArray &rngs, IloIntArray& cone)
{IloEnv env = model.getEnv();// Create variables.x.add(IloNumVar(env, -IloInfinity, IloInfinity));x.add(IloNumVar(env, -IloInfinity, IloInfinity));x.add(IloNumVar(env, -IloInfinity, IloInfinity));x.add(IloNumVar(env, 0, IloInfinity));x.add(IloNumVar(env, -IloInfinity, IloInfinity));x.add(IloNumVar(env, -IloInfinity, IloInfinity));x.add(IloNumVar(env, 0, IloInfinity));// x7// Create objective function and immediately store it in return value.// obj = IloMinimize(env, x1 + x2 + x3 + x4 + x5 + x6);obj = IloMinimize(env, x[0]+x[1] + x[2] + x[3] + x[4] + x[5]);// Setup model.model.add(x[0] + x[1] + x[4]==8);model.add(x[2] + x[4] + x[5]==10);model.add(x[6] - x[0] - x[1] == 0); // x7 = x1 + x2model.add(-x[6] * x[6]+ x[0] * x[0] + x[1] * x[1] + x[2] * x[2]<=0); //[-x7^2+x1^2+x2^2+x3^2]<=0//equal to model.add(-x[3] * x[3] + x[4] * x[4]<=0), useful for lots of variablesdouble a[] = {0,0,0, -1,1 };IloExpr temp(env);for (IloInt i = 3; i < 5; i++){temp += a[i] * x[i] * x[i];}model.add(temp <= 0);temp.end();model.add(obj);
}int
main(void)
{IloEnv env;int retval = -1;try {// Create the model.IloModel model(env);IloCplex cplex(env);IloObjective obj(env);IloNumVarArray vars(env);IloRangeArray rngs(env);IloIntArray cone(env);createmodel(model, obj, vars, rngs, cone);// Extract model.cplex.extract(model);// Solve the problem. If we cannot find an _optimal_ solution then// there is no point in checking the KKT conditions and we throw an// exception.cplex.setParam(IloCplex::Param::Barrier::QCPConvergeTol, CONVTOL);if (!cplex.solve() || cplex.getStatus() != IloAlgorithm::Optimal)throw string("Failed to solve problem to optimality");IloNumArray vals_x(env);env.out() << "Solution status = " << cplex.getStatus() << endl;env.out() << "Solution value  = " << cplex.getObjValue() << endl;cplex.getValues(vals_x, vars);env.out() << "Values        = " << vals_x << endl;env.end();}catch (IloException &e) {cerr << "IloException: " << e << endl;if (env.getImpl())env.end();::abort();}catch (string& e) {cerr << e << endl;if (env.getImpl())env.end();::abort();}return retval;
}

运行结果如下图:
在这里插入图片描述

这篇关于【漫漫科研路\CC++】CPLEX解SOCP问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/841948

相关文章

mybatis和mybatis-plus设置值为null不起作用问题及解决

《mybatis和mybatis-plus设置值为null不起作用问题及解决》Mybatis-Plus的FieldStrategy主要用于控制新增、更新和查询时对空值的处理策略,通过配置不同的策略类型... 目录MyBATis-plusFieldStrategy作用FieldStrategy类型每种策略的作

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

linux下多个硬盘划分到同一挂载点问题

《linux下多个硬盘划分到同一挂载点问题》在Linux系统中,将多个硬盘划分到同一挂载点需要通过逻辑卷管理(LVM)来实现,首先,需要将物理存储设备(如硬盘分区)创建为物理卷,然后,将这些物理卷组成... 目录linux下多个硬盘划分到同一挂载点需要明确的几个概念硬盘插上默认的是非lvm总结Linux下多

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

pip install jupyterlab失败的原因问题及探索

《pipinstalljupyterlab失败的原因问题及探索》在学习Yolo模型时,尝试安装JupyterLab但遇到错误,错误提示缺少Rust和Cargo编译环境,因为pywinpty包需要它... 目录背景问题解决方案总结背景最近在学习Yolo模型,然后其中要下载jupyter(有点LSVmu像一个

解决jupyterLab打开后出现Config option `template_path`not recognized by `ExporterCollapsibleHeadings`问题

《解决jupyterLab打开后出现Configoption`template_path`notrecognizedby`ExporterCollapsibleHeadings`问题》在Ju... 目录jupyterLab打开后出现“templandroidate_path”相关问题这是 tensorflo

如何解决Pycharm编辑内容时有光标的问题

《如何解决Pycharm编辑内容时有光标的问题》文章介绍了如何在PyCharm中配置VimEmulator插件,包括检查插件是否已安装、下载插件以及安装IdeaVim插件的步骤... 目录Pycharm编辑内容时有光标1.如果Vim Emulator前面有对勾2.www.chinasem.cn如果tools工

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Java多线程父线程向子线程传值问题及解决

《Java多线程父线程向子线程传值问题及解决》文章总结了5种解决父子之间数据传递困扰的解决方案,包括ThreadLocal+TaskDecorator、UserUtils、CustomTaskDeco... 目录1 背景2 ThreadLocal+TaskDecorator3 RequestContextH