【漫漫科研路\CC++】CPLEX解SOCP问题

2024-03-24 14:58
文章标签 c++ 问题 科研 cplex 漫漫 socp

本文主要是介绍【漫漫科研路\CC++】CPLEX解SOCP问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

IBM CPLEX可以解SOCP问题,但是需要先将这个SOCP问题化为指定的格式。本文首先介绍SOCP问题,然后举例介绍如何将SOCP问题转化为CPLEX认可的输入格式并求解。

SOCP的介绍

关于SOCP问题的介绍,可以参考Boyd等人写的Convex Optimization 或者是维基百科的SOCP词条 。这里摘录Convex Optimization一书中关于SOCP的定义:

在这里插入图片描述

CPLEX求解SOCP问题

使用CPLEX求解SOCP问题,一般需要将问题转化为CPLEX可以识别的格式。CPLEX的例子ilosocpex1(位于安装目录的examples文件夹内,例如:C:\Program Files\IBM\ILOG\CPLEX_Enterprise_Server129\CPLEX_Studio\cplex\examples)给予了格式说明:
在这里插入图片描述
下面我们首先给一个直接可以使用CPLEX求解的例子,然后在此基础上考虑一个更一般的例子(需要变量替换来符合格式)。

一个简单的例子

在这里插入图片描述
如上图所示,q1, q2可以直接转化为前面提到的CPLEX认可格式。下面给出源代码如下(注意项目需要预先配置好,配置请见上一篇博文):

#include <cmath>
#include <string>
#include <iostream>
#include <ilcplex/ilocplex.h>ILOSTLBEGIN // import namespace std// Tolerance for testing KKT conditions.
#define TESTTOL 1e-9
// Tolerance for barrier convergence.
#define CONVTOL 1e-9//  A Simple Example//  Minimize//   obj: x1 + x2 + x3 + x4 + x5 + x6//  Subject To//   c1: x1 + x2      + x5      = 8//   c2:           x3 + x5 + x6 = 10//   q1: x1 >= |(x2, x3)| ---->>>>  q1: [ -x1^2 + x2^2 + x3^2 ] <= 0 and x1 >=0//   q2: x4 >= |x5|       ---->>>>  q2: [ -x4^2 + x5^2 ] <= 0 and x4 >=0//  Bounds//   x2 Free//   x3 Free//   x5 Free//   x6 Free//  Endstatic void
createmodel(IloModel& model, IloObjective &obj, IloNumVarArray &x,IloRangeArray &rngs, IloIntArray& cone)
{IloEnv env = model.getEnv();// Create variables.x.add(IloNumVar(env, 0, IloInfinity));x.add(IloNumVar(env, -IloInfinity, IloInfinity));x.add(IloNumVar(env, -IloInfinity, IloInfinity));x.add(IloNumVar(env, 0, IloInfinity));x.add(IloNumVar(env, -IloInfinity, IloInfinity));x.add(IloNumVar(env, -IloInfinity, IloInfinity));// Create objective function and immediately store it in return value.// obj = IloMinimize(env, x1 + x2 + x3 + x4 + x5 + x6);obj = IloMinimize(env, x[0]+x[1] + x[2] + x[3] + x[4] + x[5]);// Setup model.model.add(x[0] + x[1] + x[4]==8);model.add(x[2] + x[4] + x[5]==10);model.add(-x[0] * x[0] + x[1] * x[1] + x[2] * x[2]<=0);//equal to model.add(-x[3] * x[3] + x[4] * x[4]<=0), useful for lots of variablesdouble a[] = {0,0,0, -1,1 };IloExpr temp(env);for (IloInt i = 3; i < 5; i++){temp += a[i] * x[i] * x[i];}model.add(temp <= 0);temp.end();model.add(obj);
}int
main(void)
{IloEnv env;int retval = -1;try {// Create the model.IloModel model(env);IloCplex cplex(env);IloObjective obj(env);IloNumVarArray vars(env);IloRangeArray rngs(env);IloIntArray cone(env);createmodel(model, obj, vars, rngs, cone);// Extract model.cplex.extract(model);// Solve the problem. If we cannot find an _optimal_ solution then// there is no point in checking the KKT conditions and we throw an// exception.cplex.setParam(IloCplex::Param::Barrier::QCPConvergeTol, CONVTOL);if (!cplex.solve() || cplex.getStatus() != IloAlgorithm::Optimal)throw string("Failed to solve problem to optimality");IloNumArray vals_x(env);env.out() << "Solution status = " << cplex.getStatus() << endl;env.out() << "Solution value  = " << cplex.getObjValue() << endl;cplex.getValues(vals_x, vars);env.out() << "Values        = " << vals_x << endl;env.end();}catch (IloException &e) {cerr << "IloException: " << e << endl;if (env.getImpl())env.end();::abort();}catch (string& e) {cerr << e << endl;if (env.getImpl())env.end();::abort();}return retval;
}

运行结果如下图:
在这里插入图片描述

一个更一般的例子

在前面例子的基础上,我们只是改变了约束q1,使其更一般化,如下图所示:
在这里插入图片描述

为了将q1转化为合适的格式,我们使用变量替换 $x_7=x_1+x_2 $ 。因此只需在前面源代码中更改 createmodel 函数中的部分代码。为保持代码完整性,我们依旧给出完整的代码:

#include <cmath>
#include <string>
#include <iostream>
#include <ilcplex/ilocplex.h>ILOSTLBEGIN // import namespace std// Tolerance for testing KKT conditions.
#define TESTTOL 1e-9
// Tolerance for barrier convergence.
#define CONVTOL 1e-9//  A Simple Example//  Minimize//   obj: x1 + x2 + x3 + x4 + x5 + x6//  Subject To//   c1: x1 + x2      + x5      = 8//   c2:           x3 + x5 + x6 = 10//   q1: x1 + x2 >= |(x1, x2, x3)| ---->>>> q1:[-x7^2+x1^2+x2^2+x3^2]<=0 and x7=x1+x2>=0//   q2: x4 >= |x5|       ---->>>>  q2: [ -x4^2 + x5^2 ] <= 0 and x4 >=0//  Bounds//   x1 Free//   x2 Free//   x3 Free//   x5 Free//   x6 Free//  Endstatic void
createmodel(IloModel& model, IloObjective &obj, IloNumVarArray &x,IloRangeArray &rngs, IloIntArray& cone)
{IloEnv env = model.getEnv();// Create variables.x.add(IloNumVar(env, -IloInfinity, IloInfinity));x.add(IloNumVar(env, -IloInfinity, IloInfinity));x.add(IloNumVar(env, -IloInfinity, IloInfinity));x.add(IloNumVar(env, 0, IloInfinity));x.add(IloNumVar(env, -IloInfinity, IloInfinity));x.add(IloNumVar(env, -IloInfinity, IloInfinity));x.add(IloNumVar(env, 0, IloInfinity));// x7// Create objective function and immediately store it in return value.// obj = IloMinimize(env, x1 + x2 + x3 + x4 + x5 + x6);obj = IloMinimize(env, x[0]+x[1] + x[2] + x[3] + x[4] + x[5]);// Setup model.model.add(x[0] + x[1] + x[4]==8);model.add(x[2] + x[4] + x[5]==10);model.add(x[6] - x[0] - x[1] == 0); // x7 = x1 + x2model.add(-x[6] * x[6]+ x[0] * x[0] + x[1] * x[1] + x[2] * x[2]<=0); //[-x7^2+x1^2+x2^2+x3^2]<=0//equal to model.add(-x[3] * x[3] + x[4] * x[4]<=0), useful for lots of variablesdouble a[] = {0,0,0, -1,1 };IloExpr temp(env);for (IloInt i = 3; i < 5; i++){temp += a[i] * x[i] * x[i];}model.add(temp <= 0);temp.end();model.add(obj);
}int
main(void)
{IloEnv env;int retval = -1;try {// Create the model.IloModel model(env);IloCplex cplex(env);IloObjective obj(env);IloNumVarArray vars(env);IloRangeArray rngs(env);IloIntArray cone(env);createmodel(model, obj, vars, rngs, cone);// Extract model.cplex.extract(model);// Solve the problem. If we cannot find an _optimal_ solution then// there is no point in checking the KKT conditions and we throw an// exception.cplex.setParam(IloCplex::Param::Barrier::QCPConvergeTol, CONVTOL);if (!cplex.solve() || cplex.getStatus() != IloAlgorithm::Optimal)throw string("Failed to solve problem to optimality");IloNumArray vals_x(env);env.out() << "Solution status = " << cplex.getStatus() << endl;env.out() << "Solution value  = " << cplex.getObjValue() << endl;cplex.getValues(vals_x, vars);env.out() << "Values        = " << vals_x << endl;env.end();}catch (IloException &e) {cerr << "IloException: " << e << endl;if (env.getImpl())env.end();::abort();}catch (string& e) {cerr << e << endl;if (env.getImpl())env.end();::abort();}return retval;
}

运行结果如下图:
在这里插入图片描述

这篇关于【漫漫科研路\CC++】CPLEX解SOCP问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/841948

相关文章

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

从入门到精通C++11 <chrono> 库特性

《从入门到精通C++11<chrono>库特性》chrono库是C++11中一个非常强大和实用的库,它为时间处理提供了丰富的功能和类型安全的接口,通过本文的介绍,我们了解了chrono库的基本概念... 目录一、引言1.1 为什么需要<chrono>库1.2<chrono>库的基本概念二、时间段(Durat

Redis出现中文乱码的问题及解决

《Redis出现中文乱码的问题及解决》:本文主要介绍Redis出现中文乱码的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 问题的产生2China编程. 问题的解决redihttp://www.chinasem.cns数据进制问题的解决中文乱码问题解决总结

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

c++中的set容器介绍及操作大全

《c++中的set容器介绍及操作大全》:本文主要介绍c++中的set容器介绍及操作大全,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录​​一、核心特性​​️ ​​二、基本操作​​​​1. 初始化与赋值​​​​2. 增删查操作​​​​3. 遍历方

解析C++11 static_assert及与Boost库的关联从入门到精通

《解析C++11static_assert及与Boost库的关联从入门到精通》static_assert是C++中强大的编译时验证工具,它能够在编译阶段拦截不符合预期的类型或值,增强代码的健壮性,通... 目录一、背景知识:传统断言方法的局限性1.1 assert宏1.2 #error指令1.3 第三方解决

全面解析MySQL索引长度限制问题与解决方案

《全面解析MySQL索引长度限制问题与解决方案》MySQL对索引长度设限是为了保持高效的数据检索性能,这个限制不是MySQL的缺陷,而是数据库设计中的权衡结果,下面我们就来看看如何解决这一问题吧... 目录引言:为什么会有索引键长度问题?一、问题根源深度解析mysql索引长度限制原理实际场景示例二、五大解决

Springboot如何正确使用AOP问题

《Springboot如何正确使用AOP问题》:本文主要介绍Springboot如何正确使用AOP问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录​一、AOP概念二、切点表达式​execution表达式案例三、AOP通知四、springboot中使用AOP导出