【漫漫科研路\CC++】Win10 + VS2017 + CUDA10.1 + CPLEX12.9 配置

2024-03-24 14:58

本文主要是介绍【漫漫科研路\CC++】Win10 + VS2017 + CUDA10.1 + CPLEX12.9 配置,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Win10下搭建VS2017+CUDA10.1+CPLEX12.9开发环境

想来已经有三、四年没有用过C/C++了,一直都是使用MATLAB进行算法的实现。相比于C/C++, MATLAB更加适合快速地实现算法,可视化仿真结果。但最近想学习并行计算(尽管MATLAB也可以实现并行化),并且实验室的服务器又装有RTX2080Ti的显卡,因此考虑使用CUDA平台实现GPU并行编程。另一方面,我需要使用IBM的CPLEX工具来验证算法的结果,于是乎就有了这篇文章。

VS2017的安装

VS2017的安装比较简单,我就不作介绍了。但是有两点需要注意:

  • 最好先安装VS2017,然后再安装CUDA和CPLEX,
  • 最好不要安装最新版本VS2019,CPLEX12.9目前支持的是VS2015和VS2017

CUDA10.1的安装

直接从NVIDIA官网下载最新版本的CUDA进行安装,也可以安装历史发行版本。按照默认设置安装即可。

测试是否安装成功
最快捷的方法是运行cuda安装完成后自带的样例,默认安装在C:\ProgramData\NVIDIA Corporation\CUDA Samples\v10.1。下面我们介绍一般的方法,方便自己创建cuda项目:

  • 在VS2017中创建一个HelloWorld_GPU的项目,如下图所示:
    创建CUDA项目
  • 项目中自带一个kernel.cu的文件,可以直接运行,看是否运行成功。这里,我们依照传统,写一个更为简单的hello world程序来进行测试。删除kernel.cu文件,在项目中添加一个CUDA C/C++文件取名为Hello_World,程序如下:
#include<stdio.h>
#include"cuda_runtime.h"__global__ void helloFromGPU(void)
{printf("Hello World from GPU!\n");
}void main()
{printf("Hello World from CPU.\n\n");//Hello from CPUhelloFromGPU << <1, 10 >> > ();//call for 10 threads}

运行结果如下:
在这里插入图片描述


CPLEX12.9的安装

CPLEX12.9的安装是相对来说比较复杂的,简单来说,分为CPLEX12.9的下载项目的配置。具体细节如下:

CPLEX12.9教育版的下载

普通免费版本支持1000个变量或约束的优化,下载地址及网页如下:
在这里插入图片描述
为不受限制,我们需要使用学生邮箱进行验证下载(Get student and faculty editions for free). 然后在如下网页注册:
在这里插入图片描述
最后选择如下版本进行下载:
在这里插入图片描述


CPLEX项目配置
项目的创建:

首先创建一个C/C++项目,在项目中添加一个test.cpp(名称自取)文件,其代码来自于 IBM ILOG CPLEX Optimization Studio Getting Started with CPLEX 的样例,代码如下:

#include <ilcplex/ilocplex.h>
#include <stdio.h>
using namespace std;ILOSTLBEGIN
int
main(void *) {IloEnv env;try {IloModel model(env);IloNumVarArray vars(env);vars.add(IloNumVar(env, 0.0, 40.0));  // 0 <= x1 <= 40vars.add(IloNumVar(env));  // 0 <= x2vars.add(IloNumVar(env));  // 0 <= x3model.add(IloMaximize(env, vars[0] + 2 * vars[1] + 3 * vars[2])); //maximize x1 + 2 x2 + 3 x3model.add(-vars[0] + vars[1] + vars[2] <= 20);//subject to -x1 + x2 + x3 <= 20model.add(vars[0] - 3 * vars[1] + vars[2] <= 30);//x1 - 3 x2 + x3 <=30IloCplex cplex(model);if (!cplex.solve()) {env.error() << "Failed to optimize LP." << endl;throw(-1);}IloNumArray vals(env);env.out() << "Solution status = " << cplex.getStatus() << endl;env.out() << "Solution value = " << cplex.getObjValue() << endl;cplex.getValues(vals, vars);env.out() << "Values = " << vals << endl;}catch (IloException & e) { cerr << "Concert exception caught: " << e << endl; }catch (...) { cerr << "Unknown exception caught" << endl; }env.end();system("pause");return 0;
}

注意:VS2017创建C/C++会自带pch.h和pch.cpp文件,我们可以删除这两个文件而不影响程序运行,具体可以通过项目->属性-> C/C++ -> Precompiled Headers -> Precompiled Header一项中选择Not Using Precompiled Headers 实现。


系统环境和项目的配置:

本文的配置完全依照 IBM ILOG CPLEX Optimization Studio Getting Started with CPLEX 以及安装完CPLEX后,位于默认安装目录C:\ProgramFiles\IBM\ILOG\CPLEX_Enterprise_Server129\CPLEX_Studio\cplex的c_cpp.html文件

  • 电脑的系统环境变量配置参考IBM ILOG CPLEX Optimization Studio Getting Started with CPLEX 中Setting up CPLEX on Windows一节中的设置:
    在这里插入图片描述
    具体操作如下:右击我的电脑->属性->高级系统设置->环境变量,编辑(添加)Path变量如下:
    在这里插入图片描述

  • 项目的配置参考前面提及的c_cpp.htmlBuilding your own project which links with CPLEX一节的第4点:
    在这里插入图片描述
    根据上图所示,项目具体配置如下
  1. 将调试环境改为 release 和 x64:
    在这里插入图片描述

  2. 右击项目、选择属性、然后选择C/C++一项:

    1). 在General(常规)一项中,选择Additional Include Directories,添加如下:
    在这里插入图片描述
    2). 在Preprocessor(预处理器)中,选择Preprocessor Definitions, 编辑如下:
    在这里插入图片描述
    3). 选择Code Generation(代码生成),然后选择Runtime Library(运行库), 设置如下 :
    在这里插入图片描述

  3. 右击项目、选择属性、然后选择Link一项,然后进行如下操作:
    1).选择 General一项,在 Additional Library Directories中添加如下库目录:在这里插入图片描述
    2). 选择Input,然后选择Additional Dependencies,设置如下:
    在这里插入图片描述
    完成上述项目配置后,注意按下确定按钮。注意:上述配置中的目录都是你CPLEX的安装目录。最后在菜单栏Build选项中选择Configuration Manager也需要选择Release和x64,如图所示:
    在这里插入图片描述
    至此,所有配置完成,运行项目,结果如下:
    在这里插入图片描述


原文:https://blog.csdn.net/tengweitw/article/details/103113392

作者:nineheadedbird


这篇关于【漫漫科研路\CC++】Win10 + VS2017 + CUDA10.1 + CPLEX12.9 配置的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/841947

相关文章

C++右移运算符的一个小坑及解决

《C++右移运算符的一个小坑及解决》文章指出右移运算符处理负数时左侧补1导致死循环,与除法行为不同,强调需注意补码机制以正确统计二进制1的个数... 目录我遇到了这么一个www.chinasem.cn函数由此可以看到也很好理解总结我遇到了这么一个函数template<typename T>unsigned

mybatis映射器配置小结

《mybatis映射器配置小结》本文详解MyBatis映射器配置,重点讲解字段映射的三种解决方案(别名、自动驼峰映射、resultMap),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定... 目录select中字段的映射问题使用SQL语句中的别名功能使用mapUnderscoreToCame

Linux下MySQL数据库定时备份脚本与Crontab配置教学

《Linux下MySQL数据库定时备份脚本与Crontab配置教学》在生产环境中,数据库是核心资产之一,定期备份数据库可以有效防止意外数据丢失,本文将分享一份MySQL定时备份脚本,并讲解如何通过cr... 目录备份脚本详解脚本功能说明授权与可执行权限使用 Crontab 定时执行编辑 Crontab添加定

Java使用jar命令配置服务器端口的完整指南

《Java使用jar命令配置服务器端口的完整指南》本文将详细介绍如何使用java-jar命令启动应用,并重点讲解如何配置服务器端口,同时提供一个实用的Web工具来简化这一过程,希望对大家有所帮助... 目录1. Java Jar文件简介1.1 什么是Jar文件1.2 创建可执行Jar文件2. 使用java

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

SpringBoot 多环境开发实战(从配置、管理与控制)

《SpringBoot多环境开发实战(从配置、管理与控制)》本文详解SpringBoot多环境配置,涵盖单文件YAML、多文件模式、MavenProfile分组及激活策略,通过优先级控制灵活切换环境... 目录一、多环境开发基础(单文件 YAML 版)(一)配置原理与优势(二)实操示例二、多环境开发多文件版

Vite 打包目录结构自定义配置小结

《Vite打包目录结构自定义配置小结》在Vite工程开发中,默认打包后的dist目录资源常集中在asset目录下,不利于资源管理,本文基于Rollup配置原理,本文就来介绍一下通过Vite配置自定义... 目录一、实现原理二、具体配置步骤1. 基础配置文件2. 配置说明(1)js 资源分离(2)非 JS 资

MySQL8 密码强度评估与配置详解

《MySQL8密码强度评估与配置详解》MySQL8默认启用密码强度插件,实施MEDIUM策略(长度8、含数字/字母/特殊字符),支持动态调整与配置文件设置,推荐使用STRONG策略并定期更新密码以提... 目录一、mysql 8 密码强度评估机制1.核心插件:validate_password2.密码策略级

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

QT Creator配置Kit的实现示例

《QTCreator配置Kit的实现示例》本文主要介绍了使用Qt5.12.12与VS2022时,因MSVC编译器版本不匹配及WindowsSDK缺失导致配置错误的问题解决,感兴趣的可以了解一下... 目录0、背景:qt5.12.12+vs2022一、症状:二、原因:(可以跳过,直奔后面的解决方法)三、解决方