【漫漫科研路\CC++】Win10 + VS2017 + CUDA10.1 + CPLEX12.9 配置

2024-03-24 14:58

本文主要是介绍【漫漫科研路\CC++】Win10 + VS2017 + CUDA10.1 + CPLEX12.9 配置,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Win10下搭建VS2017+CUDA10.1+CPLEX12.9开发环境

想来已经有三、四年没有用过C/C++了,一直都是使用MATLAB进行算法的实现。相比于C/C++, MATLAB更加适合快速地实现算法,可视化仿真结果。但最近想学习并行计算(尽管MATLAB也可以实现并行化),并且实验室的服务器又装有RTX2080Ti的显卡,因此考虑使用CUDA平台实现GPU并行编程。另一方面,我需要使用IBM的CPLEX工具来验证算法的结果,于是乎就有了这篇文章。

VS2017的安装

VS2017的安装比较简单,我就不作介绍了。但是有两点需要注意:

  • 最好先安装VS2017,然后再安装CUDA和CPLEX,
  • 最好不要安装最新版本VS2019,CPLEX12.9目前支持的是VS2015和VS2017

CUDA10.1的安装

直接从NVIDIA官网下载最新版本的CUDA进行安装,也可以安装历史发行版本。按照默认设置安装即可。

测试是否安装成功
最快捷的方法是运行cuda安装完成后自带的样例,默认安装在C:\ProgramData\NVIDIA Corporation\CUDA Samples\v10.1。下面我们介绍一般的方法,方便自己创建cuda项目:

  • 在VS2017中创建一个HelloWorld_GPU的项目,如下图所示:
    创建CUDA项目
  • 项目中自带一个kernel.cu的文件,可以直接运行,看是否运行成功。这里,我们依照传统,写一个更为简单的hello world程序来进行测试。删除kernel.cu文件,在项目中添加一个CUDA C/C++文件取名为Hello_World,程序如下:
#include<stdio.h>
#include"cuda_runtime.h"__global__ void helloFromGPU(void)
{printf("Hello World from GPU!\n");
}void main()
{printf("Hello World from CPU.\n\n");//Hello from CPUhelloFromGPU << <1, 10 >> > ();//call for 10 threads}

运行结果如下:
在这里插入图片描述


CPLEX12.9的安装

CPLEX12.9的安装是相对来说比较复杂的,简单来说,分为CPLEX12.9的下载项目的配置。具体细节如下:

CPLEX12.9教育版的下载

普通免费版本支持1000个变量或约束的优化,下载地址及网页如下:
在这里插入图片描述
为不受限制,我们需要使用学生邮箱进行验证下载(Get student and faculty editions for free). 然后在如下网页注册:
在这里插入图片描述
最后选择如下版本进行下载:
在这里插入图片描述


CPLEX项目配置
项目的创建:

首先创建一个C/C++项目,在项目中添加一个test.cpp(名称自取)文件,其代码来自于 IBM ILOG CPLEX Optimization Studio Getting Started with CPLEX 的样例,代码如下:

#include <ilcplex/ilocplex.h>
#include <stdio.h>
using namespace std;ILOSTLBEGIN
int
main(void *) {IloEnv env;try {IloModel model(env);IloNumVarArray vars(env);vars.add(IloNumVar(env, 0.0, 40.0));  // 0 <= x1 <= 40vars.add(IloNumVar(env));  // 0 <= x2vars.add(IloNumVar(env));  // 0 <= x3model.add(IloMaximize(env, vars[0] + 2 * vars[1] + 3 * vars[2])); //maximize x1 + 2 x2 + 3 x3model.add(-vars[0] + vars[1] + vars[2] <= 20);//subject to -x1 + x2 + x3 <= 20model.add(vars[0] - 3 * vars[1] + vars[2] <= 30);//x1 - 3 x2 + x3 <=30IloCplex cplex(model);if (!cplex.solve()) {env.error() << "Failed to optimize LP." << endl;throw(-1);}IloNumArray vals(env);env.out() << "Solution status = " << cplex.getStatus() << endl;env.out() << "Solution value = " << cplex.getObjValue() << endl;cplex.getValues(vals, vars);env.out() << "Values = " << vals << endl;}catch (IloException & e) { cerr << "Concert exception caught: " << e << endl; }catch (...) { cerr << "Unknown exception caught" << endl; }env.end();system("pause");return 0;
}

注意:VS2017创建C/C++会自带pch.h和pch.cpp文件,我们可以删除这两个文件而不影响程序运行,具体可以通过项目->属性-> C/C++ -> Precompiled Headers -> Precompiled Header一项中选择Not Using Precompiled Headers 实现。


系统环境和项目的配置:

本文的配置完全依照 IBM ILOG CPLEX Optimization Studio Getting Started with CPLEX 以及安装完CPLEX后,位于默认安装目录C:\ProgramFiles\IBM\ILOG\CPLEX_Enterprise_Server129\CPLEX_Studio\cplex的c_cpp.html文件

  • 电脑的系统环境变量配置参考IBM ILOG CPLEX Optimization Studio Getting Started with CPLEX 中Setting up CPLEX on Windows一节中的设置:
    在这里插入图片描述
    具体操作如下:右击我的电脑->属性->高级系统设置->环境变量,编辑(添加)Path变量如下:
    在这里插入图片描述

  • 项目的配置参考前面提及的c_cpp.htmlBuilding your own project which links with CPLEX一节的第4点:
    在这里插入图片描述
    根据上图所示,项目具体配置如下
  1. 将调试环境改为 release 和 x64:
    在这里插入图片描述

  2. 右击项目、选择属性、然后选择C/C++一项:

    1). 在General(常规)一项中,选择Additional Include Directories,添加如下:
    在这里插入图片描述
    2). 在Preprocessor(预处理器)中,选择Preprocessor Definitions, 编辑如下:
    在这里插入图片描述
    3). 选择Code Generation(代码生成),然后选择Runtime Library(运行库), 设置如下 :
    在这里插入图片描述

  3. 右击项目、选择属性、然后选择Link一项,然后进行如下操作:
    1).选择 General一项,在 Additional Library Directories中添加如下库目录:在这里插入图片描述
    2). 选择Input,然后选择Additional Dependencies,设置如下:
    在这里插入图片描述
    完成上述项目配置后,注意按下确定按钮。注意:上述配置中的目录都是你CPLEX的安装目录。最后在菜单栏Build选项中选择Configuration Manager也需要选择Release和x64,如图所示:
    在这里插入图片描述
    至此,所有配置完成,运行项目,结果如下:
    在这里插入图片描述


原文:https://blog.csdn.net/tengweitw/article/details/103113392

作者:nineheadedbird


这篇关于【漫漫科研路\CC++】Win10 + VS2017 + CUDA10.1 + CPLEX12.9 配置的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/841947

相关文章

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

SpringBoot+MyBatis-Flex配置ProxySQL的实现步骤

《SpringBoot+MyBatis-Flex配置ProxySQL的实现步骤》本文主要介绍了SpringBoot+MyBatis-Flex配置ProxySQL的实现步骤,文中通过示例代码介绍的非常详... 目录 目标 步骤 1:确保 ProxySQL 和 mysql 主从同步已正确配置ProxySQL 的

Spring Boot整合log4j2日志配置的详细教程

《SpringBoot整合log4j2日志配置的详细教程》:本文主要介绍SpringBoot项目中整合Log4j2日志框架的步骤和配置,包括常用日志框架的比较、配置参数介绍、Log4j2配置详解... 目录前言一、常用日志框架二、配置参数介绍1. 日志级别2. 输出形式3. 日志格式3.1 PatternL

配置springboot项目动静分离打包分离lib方式

《配置springboot项目动静分离打包分离lib方式》本文介绍了如何将SpringBoot工程中的静态资源和配置文件分离出来,以减少jar包大小,方便修改配置文件,通过在jar包同级目录创建co... 目录前言1、分离配置文件原理2、pom文件配置3、使用package命令打包4、总结前言默认情况下,

c++中std::placeholders的使用方法

《c++中std::placeholders的使用方法》std::placeholders是C++标准库中的一个工具,用于在函数对象绑定时创建占位符,本文就来详细的介绍一下,具有一定的参考价值,感兴... 目录1. 基本概念2. 使用场景3. 示例示例 1:部分参数绑定示例 2:参数重排序4. 注意事项5.

使用C++将处理后的信号保存为PNG和TIFF格式

《使用C++将处理后的信号保存为PNG和TIFF格式》在信号处理领域,我们常常需要将处理结果以图像的形式保存下来,方便后续分析和展示,C++提供了多种库来处理图像数据,本文将介绍如何使用stb_ima... 目录1. PNG格式保存使用stb_imagephp_write库1.1 安装和包含库1.2 代码解

C++实现封装的顺序表的操作与实践

《C++实现封装的顺序表的操作与实践》在程序设计中,顺序表是一种常见的线性数据结构,通常用于存储具有固定顺序的元素,与链表不同,顺序表中的元素是连续存储的,因此访问速度较快,但插入和删除操作的效率可能... 目录一、顺序表的基本概念二、顺序表类的设计1. 顺序表类的成员变量2. 构造函数和析构函数三、顺序表

使用C++实现单链表的操作与实践

《使用C++实现单链表的操作与实践》在程序设计中,链表是一种常见的数据结构,特别是在动态数据管理、频繁插入和删除元素的场景中,链表相比于数组,具有更高的灵活性和高效性,尤其是在需要频繁修改数据结构的应... 目录一、单链表的基本概念二、单链表类的设计1. 节点的定义2. 链表的类定义三、单链表的操作实现四、

使用C/C++调用libcurl调试消息的方式

《使用C/C++调用libcurl调试消息的方式》在使用C/C++调用libcurl进行HTTP请求时,有时我们需要查看请求的/应答消息的内容(包括请求头和请求体)以方便调试,libcurl提供了多种... 目录1. libcurl 调试工具简介2. 输出请求消息使用 CURLOPT_VERBOSE使用 C