本文主要是介绍uva 10303 How Many Trees?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
原题:
A binary search tree is a binary tree with root k such that any node v reachable from its left has
label(v) < label(k) and any node w reachable from its right has label(w) > label(k). It is a search
structure which can find a node with label x in O(nlogn) average time, where n is the size of the tree
(number of vertices).
Given a number n, can you tell how many different binary search trees may be constructed with a
set of numbers of size n such that each element of the set will be associated to the label of exactly one
node in a binary search tree?
Input
The input will contain a number 1 ≤ i ≤ 1000 per line representing the number of elements of the set.
Output
You have to print a line in the output for each entry with the answer to the previous question.
Sample Input
1
2
3
Sample Output
1
2
5
大意:
问你一个有n个节点的二叉查找树有多少种画法?
#include<iostream>
#include<algorithm>
#include<map>
#include<string>
#include<cstring>
#include<sstream>
#include<cstdio>
#include<vector>
#include<cmath>
#include<stack>
#include<queue>
#include<iomanip>
#include<set>
#include<fstream>
using namespace std;
#define MAXN 9999
#define MAXSIZE 10
#define DLEN 4class BigNum
{
private:int a[500]; //可以控制大数的位数int len; //大数长度
public:BigNum(){ len = 1;memset(a,0,sizeof(a)); } //构造函数BigNum(const int); //将一个int类型的变量转化为大数BigNum(const char*); //将一个字符串类型的变量转化为大数BigNum(const BigNum &); //拷贝构造函数BigNum &operator=(const BigNum &); //重载赋值运算符,大数之间进行赋值运算friend istream& operator>>(istream&, BigNum&); //重载输入运算符friend ostream& operator<<(ostream&, BigNum&); //重载输出运算符BigNum operator*(const BigNum &) const; //重载乘法运算符,两个大数之间的相乘运算BigNum operator/(const int &) const; //重载除法运算符,大数对一个整数进行相除运算void print(); //输出大数
};
BigNum::BigNum(const int b) //将一个int类型的变量转化为大数
{int c,d = b;len = 0;memset(a,0,sizeof(a));while(d > MAXN){c = d - (d / (MAXN + 1)) * (MAXN + 1);d = d / (MAXN + 1);a[len++] = c;}a[len++] = d;
}
BigNum::BigNum(const char*s) //将一个字符串类型的变量转化为大数
{int t,k,index,l,i;memset(a,0,sizeof(a));l=strlen(s);len=l/DLEN;if(l%DLEN)len++;index=0;for(i=l-1;i>=0;i-=DLEN){t=0;k=i-DLEN+1;if(k<0)k=0;for(int j=k;j<=i;j++)t=t*10+s[j]-'0';a[index++]=t;}
}
BigNum::BigNum(const BigNum & T) : len(T.len) //拷贝构造函数
{int i;memset(a,0,sizeof(a));for(i = 0 ; i < len ; i++)a[i] = T.a[i];
}
BigNum & BigNum::operator=(const BigNum & n) //重载赋值运算符,大数之间进行赋值运算
{int i;len = n.len;memset(a,0,sizeof(a));for(i = 0 ; i < len ; i++)a[i] = n.a[i];return *this;
}
istream& operator>>(istream & in, BigNum & b) //重载输入运算符
{char ch[MAXSIZE*4];int i = -1;in>>ch;int l=strlen(ch);int count=0,sum=0;for(i=l-1;i>=0;){sum = 0;int t=1;for(int j=0;j<4&&i>=0;j++,i--,t*=10){sum+=(ch[i]-'0')*t;}b.a[count]=sum;count++;}b.len =count++;return in;}
ostream& operator<<(ostream& out, BigNum& b) //重载输出运算符
{int i;cout << b.a[b.len - 1];for(i = b.len - 2 ; i >= 0 ; i--){cout.width(DLEN);cout.fill('0');cout << b.a[i];}return out;
}
BigNum BigNum::operator*(const BigNum & T) const //两个大数之间的相乘运算
{BigNum ret;int i,j,up;int temp,temp1;for(i = 0 ; i < len ; i++){up = 0;for(j = 0 ; j < T.len ; j++){temp = a[i] * T.a[j] + ret.a[i + j] + up;if(temp > MAXN){temp1 = temp - temp / (MAXN + 1) * (MAXN + 1);up = temp / (MAXN + 1);ret.a[i + j] = temp1;}else{up = 0;ret.a[i + j] = temp;}}if(up != 0)ret.a[i + j] = up;}ret.len = i + j;while(ret.a[ret.len - 1] == 0 && ret.len > 1)ret.len--;return ret;
}
BigNum BigNum::operator/(const int & b) const //大数对一个整数进行相除运算
{BigNum ret;int i,down = 0;for(i = len - 1 ; i >= 0 ; i--){ret.a[i] = (a[i] + down * (MAXN + 1)) / b;down = a[i] + down * (MAXN + 1) - ret.a[i] * b;}ret.len = len;while(ret.a[ret.len - 1] == 0 && ret.len > 1)ret.len--;return ret;
}
BigNum ans[1001];
int main()
{ios::sync_with_stdio(false);int n;ans[1]=1;for(int i=2;i<=1000;i++){ans[i]=ans[i-1]*(4*i-2)/(i+1);}while(cin>>n){cout<<ans[n]<<endl;}
// input.close();
// output.close();return 0;
}
解答:
要是看过catalan数的话,直接就能判断出来。如果不太熟悉可以这样考虑,有n个有序的值x1,x2,x3….xn
现在以xk为根的话,xk左侧应该有k-1个节点,右侧有n-k个节点,设xk左侧节点的排列方法有f(k-1)种,右侧有f(n-k)种 最后以xk为根的二叉查找树就应该有f(k-1)*f(n-k)种方法,最后把所有xk求和就是catalan数。
大数模板:
#include<iostream>
#include<string>
#include<iomanip>
#include<algorithm>
using namespace std; #define MAXN 9999
#define MAXSIZE 10
#define DLEN 4class BigNum
{
private: int a[500]; //可以控制大数的位数 int len; //大数长度
public: BigNum(){ len = 1;memset(a,0,sizeof(a)); } //构造函数BigNum(const int); //将一个int类型的变量转化为大数BigNum(const char*); //将一个字符串类型的变量转化为大数BigNum(const BigNum &); //拷贝构造函数BigNum &operator=(const BigNum &); //重载赋值运算符,大数之间进行赋值运算friend istream& operator>>(istream&, BigNum&); //重载输入运算符friend ostream& operator<<(ostream&, BigNum&); //重载输出运算符BigNum operator+(const BigNum &) const; //重载加法运算符,两个大数之间的相加运算 BigNum operator-(const BigNum &) const; //重载减法运算符,两个大数之间的相减运算 BigNum operator*(const BigNum &) const; //重载乘法运算符,两个大数之间的相乘运算 BigNum operator/(const int &) const; //重载除法运算符,大数对一个整数进行相除运算BigNum operator^(const int &) const; //大数的n次方运算int operator%(const int &) const; //大数对一个int类型的变量进行取模运算 bool operator>(const BigNum & T)const; //大数和另一个大数的大小比较bool operator>(const int & t)const; //大数和一个int类型的变量的大小比较void print(); //输出大数
};
BigNum::BigNum(const int b) //将一个int类型的变量转化为大数
{ int c,d = b;len = 0;memset(a,0,sizeof(a));while(d > MAXN){c = d - (d / (MAXN + 1)) * (MAXN + 1); d = d / (MAXN + 1);a[len++] = c;}a[len++] = d;
}
BigNum::BigNum(const char*s) //将一个字符串类型的变量转化为大数
{int t,k,index,l,i;memset(a,0,sizeof(a));l=strlen(s); len=l/DLEN;if(l%DLEN)len++;index=0;for(i=l-1;i>=0;i-=DLEN){t=0;k=i-DLEN+1;if(k<0)k=0;for(int j=k;j<=i;j++)t=t*10+s[j]-'0';a[index++]=t;}
}
BigNum::BigNum(const BigNum & T) : len(T.len) //拷贝构造函数
{ int i; memset(a,0,sizeof(a)); for(i = 0 ; i < len ; i++)a[i] = T.a[i];
}
BigNum & BigNum::operator=(const BigNum & n) //重载赋值运算符,大数之间进行赋值运算
{int i;len = n.len;memset(a,0,sizeof(a)); for(i = 0 ; i < len ; i++) a[i] = n.a[i]; return *this;
}
istream& operator>>(istream & in, BigNum & b) //重载输入运算符
{char ch[MAXSIZE*4];int i = -1;in>>ch;int l=strlen(ch);int count=0,sum=0;for(i=l-1;i>=0;){sum = 0;int t=1;for(int j=0;j<4&&i>=0;j++,i--,t*=10){sum+=(ch[i]-'0')*t;}b.a[count]=sum;count++;}b.len =count++;return in;}
ostream& operator<<(ostream& out, BigNum& b) //重载输出运算符
{int i; cout << b.a[b.len - 1]; for(i = b.len - 2 ; i >= 0 ; i--){ cout.width(DLEN); cout.fill('0'); cout << b.a[i]; } return out;
}BigNum BigNum::operator+(const BigNum & T) const //两个大数之间的相加运算
{BigNum t(*this);int i,big; //位数 big = T.len > len ? T.len : len; for(i = 0 ; i < big ; i++) { t.a[i] +=T.a[i]; if(t.a[i] > MAXN) { t.a[i + 1]++; t.a[i] -=MAXN+1; } } if(t.a[big] != 0)t.len = big + 1; elset.len = big; return t;
}
BigNum BigNum::operator-(const BigNum & T) const //两个大数之间的相减运算
{ int i,j,big;bool flag;BigNum t1,t2;if(*this>T){t1=*this;t2=T;flag=0;}else{t1=T;t2=*this;flag=1;}big=t1.len;for(i = 0 ; i < big ; i++){if(t1.a[i] < t2.a[i]){ j = i + 1; while(t1.a[j] == 0)j++; t1.a[j--]--; while(j > i)t1.a[j--] += MAXN;t1.a[i] += MAXN + 1 - t2.a[i]; } elset1.a[i] -= t2.a[i];}t1.len = big;while(t1.a[len - 1] == 0 && t1.len > 1){t1.len--; big--;}if(flag)t1.a[big-1]=0-t1.a[big-1];return t1;
} BigNum BigNum::operator*(const BigNum & T) const //两个大数之间的相乘运算
{ BigNum ret; int i,j,up; int temp,temp1; for(i = 0 ; i < len ; i++){ up = 0; for(j = 0 ; j < T.len ; j++){ temp = a[i] * T.a[j] + ret.a[i + j] + up; if(temp > MAXN){ temp1 = temp - temp / (MAXN + 1) * (MAXN + 1); up = temp / (MAXN + 1); ret.a[i + j] = temp1; } else{ up = 0; ret.a[i + j] = temp; } } if(up != 0) ret.a[i + j] = up; } ret.len = i + j; while(ret.a[ret.len - 1] == 0 && ret.len > 1)ret.len--; return ret;
}
BigNum BigNum::operator/(const int & b) const //大数对一个整数进行相除运算
{ BigNum ret; int i,down = 0; for(i = len - 1 ; i >= 0 ; i--){ ret.a[i] = (a[i] + down * (MAXN + 1)) / b; down = a[i] + down * (MAXN + 1) - ret.a[i] * b; } ret.len = len; while(ret.a[ret.len - 1] == 0 && ret.len > 1)ret.len--; return ret;
}
int BigNum::operator %(const int & b) const //大数对一个int类型的变量进行取模运算
{int i,d=0;for (i = len-1; i>=0; i--){d = ((d * (MAXN+1))% b + a[i])% b; }return d;
}
BigNum BigNum::operator^(const int & n) const //大数的n次方运算
{BigNum t,ret(1);int i;if(n<0)exit(-1);if(n==0)return 1;if(n==1)return *this;int m=n;while(m>1){t=*this;for( i=1;i<<1<=m;i<<=1){t=t*t;}m-=i;ret=ret*t;if(m==1)ret=ret*(*this);}return ret;
}
bool BigNum::operator>(const BigNum & T) const //大数和另一个大数的大小比较
{ int ln; if(len > T.len)return true; else if(len == T.len){ ln = len - 1; while(a[ln] == T.a[ln] && ln >= 0)ln--; if(ln >= 0 && a[ln] > T.a[ln])return true; elsereturn false; } elsereturn false;
}
bool BigNum::operator >(const int & t) const //大数和一个int类型的变量的大小比较
{BigNum b(t);return *this>b;
}void BigNum::print() //输出大数
{ int i; cout << a[len - 1]; for(i = len - 2 ; i >= 0 ; i--){ cout.width(DLEN); cout.fill('0'); cout << a[i]; } cout << endl;
}
int main(void)
{int i,n;BigNum x[101]; //定义大数的对象数组x[0]=1;for(i=1;i<101;i++)x[i]=x[i-1]*(4*i-2)/(i+1);while(scanf("%d",&n)==1 && n!=-1){x[n].print();}
}
转自http://blog.csdn.net/hackbuteer1/article/details/6595881
这篇关于uva 10303 How Many Trees?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!