uva 580 Critical Mass

2024-03-24 08:48
文章标签 uva mass 580 critical

本文主要是介绍uva 580 Critical Mass,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原题:
Critical Mass
During the early stages of the Manhattan Project, the dangers of the new radioctive materials were not widely known. Vast new factory cities were built to manufacture uranium and plutonium in bulk.Compounds and solutions of these substances were accumulating in metal barrels, glass bottles and cardboard box piles on the cement oors of store rooms. Workers did not know that the substances they were handling could result in sickness, or worse, an explosion. The o cials who new the danger assumed that they could ensure safety by never assembling any amount close to the critical mass estimated by the physicists. But mistakes were made. The workers, ignorant of the the dangers, often
did not track these materials care- fully, and in some cases, too much material was stored together {an accident was waiting to happen.Fortunately, the dangers were taken seriously by a few knowledgeable physicists. They drew up guidelines for how to store the materials to eliminate the danger of critical mass accumulations. The system for handling uranium was simple. Each uranium cube was marked \ U “. It was to be stacked
with lead cubes (marked \ L “) interspersed. No more than two uranium cubes could be next to each other on a stack. With this simple system, a potential for the uranium reaching critical mass (three stacked next to each other) was avoided. The second constraint is that no more than thirty cubes can be stacked on top of each other, since the height of the storage room can only accommodate that many.One of the physicists was still not completely satis ed with this solution. He felt that a worker, not
paying attention or not trained with the new system, could easily cause a chain reaction. He posed the question: consider a worker stacking the radioactive cubes and non radioactive cubes at random on top of each other to a height of n cubes; how many possible combinations are there for a disaster to
happen?
For example, say the stack is of size 3. There is one way for the stack to reach critical mass { if all three cubes are radioactive.
1: UUU
However, if the size of the stack is 4, then there are three ways:
1: UUUL
2: LUUU
3: UUUU
Input
The input is a list of integers on separate lines. Each integer corresponds to the size of the stack and
is always greater than 0. The input is terminated with a integer value of 0 .
Output
For each stack, compute the total number of dangerous combinations where each cube position in the
linear stack can either be \ L ” for lead, or \ U ” for uranium. Output your answer as a single integer on
a line by itself.
Sample Input
4
5
0
Sample Output
3
8
大意:
有一些装有铀(用U表示)和铅(用L表示)的盒子,数量均足够多。要求把n(n≤30)个盒子放成一行,但至少有3个U放在一起,有多少种放法?例如,n=4, 5, 30时答案分别为3,8和974791728。

#include <bits/stdc++.h>
using namespace std;
//fstream in,out;
int n;
int f[31];
int PowerTwo[31];
int main()
{ios::sync_with_stdio(false);PowerTwo[0]=1;for(int i=1;i<=30;i++)PowerTwo[i]=PowerTwo[i-1]*2;f[0]=f[1]=f[2]=0;f[3]=1;for(int i=4;i<=30;i++){int tmp=0;for(int j=2;j<=i-2;j++)tmp+=PowerTwo[i-4]-PowerTwo[i-j-2]*f[j-2];f[i]=tmp+PowerTwo[i-3];}while(cin>>n,n){cout<<f[n]<<endl;}return 0;
}

解答:
lrj小白书上的例题,很好的一道题目,解答来源于书上。
设答案为f(n)。既然有3个U放在一起,可以根据这3个U的位置分类——对,根据前面的经验,要根据“最左边的3个U”的位置分类。假定是i、i+1和i+2这3个盒子,则前i-1个盒子不能有3个U放在一起的情况。设n个盒子“没有3个U放在一起”的方案数为g(n)=2^n -f(n),则前i-1个盒子的方案有g(i-1)种。后面的n-i-2个盒子可以随便选择,有2 n-i-2 种。根据乘法原理和加法原理,这里写图片描述遗憾的是,这个推理是有瑕疵的。即使前i-1个盒子内部不出现3个U,仍然可能和i、i+1和i+2组成3个U。正确的方法是强制让第i-1个盒子(如果存在)放L,则前i-2个盒子内部不能出现连续的3个U。因此这里写图片描述,边界是f(0)=f(1)=f(2)=0g(0)=1,g(1)=2,g(2)=4。注意上式中的2 n-3 对应于i=1的情况。

这篇关于uva 580 Critical Mass的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/841072

相关文章

uva 10055 uva 10071 uva 10300(水题两三道)

情歌两三首,水题两三道。 好久没敲代码了为暑假大作战热热身。 uva 10055 Hashmat the Brave Warrior 求俩数相减。 两个debug的地方,一个是longlong,一个是输入顺序。 代码: #include<stdio.h>int main(){long long a, b;//debugwhile(scanf("%lld%lld", &

poj 3259 uva 558 Wormholes(bellman最短路负权回路判断)

poj 3259: 题意:John的农场里n块地,m条路连接两块地,w个虫洞,虫洞是一条单向路,不但会把你传送到目的地,而且时间会倒退Ts。 任务是求你会不会在从某块地出发后又回来,看到了离开之前的自己。 判断树中是否存在负权回路就ok了。 bellman代码: #include<stdio.h>const int MaxN = 501;//农场数const int

poj 2349 Arctic Network uva 10369(prim or kruscal最小生成树)

题目很麻烦,因为不熟悉最小生成树的算法调试了好久。 感觉网上的题目解释都没说得很清楚,不适合新手。自己写一个。 题意:给你点的坐标,然后两点间可以有两种方式来通信:第一种是卫星通信,第二种是无线电通信。 卫星通信:任何两个有卫星频道的点间都可以直接建立连接,与点间的距离无关; 无线电通信:两个点之间的距离不能超过D,无线电收发器的功率越大,D越大,越昂贵。 计算无线电收发器D

uva 10387 Billiard(简单几何)

题意是一个球从矩形的中点出发,告诉你小球与矩形两条边的碰撞次数与小球回到原点的时间,求小球出发时的角度和小球的速度。 简单的几何问题,小球每与竖边碰撞一次,向右扩展一个相同的矩形;每与横边碰撞一次,向上扩展一个相同的矩形。 可以发现,扩展矩形的路径和在当前矩形中的每一段路径相同,当小球回到出发点时,一条直线的路径刚好经过最后一个扩展矩形的中心点。 最后扩展的路径和横边竖边恰好组成一个直

uva 10061 How many zero's and how many digits ?(不同进制阶乘末尾几个0)+poj 1401

题意是求在base进制下的 n!的结果有几位数,末尾有几个0。 想起刚开始的时候做的一道10进制下的n阶乘末尾有几个零,以及之前有做过的一道n阶乘的位数。 当时都是在10进制下的。 10进制下的做法是: 1. n阶位数:直接 lg(n!)就是得数的位数。 2. n阶末尾0的个数:由于2 * 5 将会在得数中以0的形式存在,所以计算2或者计算5,由于因子中出现5必然出现2,所以直接一

uva 568 Just the Facts(n!打表递推)

题意是求n!的末尾第一个不为0的数字。 不用大数,特别的处理。 代码: #include <stdio.h>const int maxn = 10000 + 1;int f[maxn];int main(){#ifdef LOCALfreopen("in.txt", "r", stdin);#endif // LOCALf[0] = 1;for (int i = 1; i <=

uva 575 Skew Binary(位运算)

求第一个以(2^(k+1)-1)为进制的数。 数据不大,可以直接搞。 代码: #include <stdio.h>#include <string.h>const int maxn = 100 + 5;int main(){char num[maxn];while (scanf("%s", num) == 1){if (num[0] == '0')break;int len =

uva 10014 Simple calculations(数学推导)

直接按照题意来推导最后的结果就行了。 开始的时候只做到了第一个推导,第二次没有继续下去。 代码: #include<stdio.h>int main(){int T, n, i;double a, aa, sum, temp, ans;scanf("%d", &T);while(T--){scanf("%d", &n);scanf("%lf", &first);scanf

uva 10916 Factstone Benchmark(打表)

题意是求 k ! <= 2 ^ n ,的最小k。 由于n比较大,大到 2 ^ 20 次方,所以 2 ^ 2 ^ 20比较难算,所以做一些基础的数学变换。 对不等式两边同时取log2,得: log2(k ! ) <=  log2(2 ^ n)= n,即:log2(1) + log2(2) + log2 (3) + log2(4) + ... + log2(k) <= n ,其中 n 为 2 ^

uva 10025 The ? 1 ? 2 ? ... ? n = k problem(数学)

题意是    ?  1  ?  2  ?  ...  ?  n = k 式子中给k,? 处可以填 + 也可以填 - ,问最小满足条件的n。 e.g k = 12  - 1 + 2 + 3 + 4 + 5 + 6 - 7 = 12 with n = 7。 先给证明,令 S(n) = 1 + 2 + 3 + 4 + 5 + .... + n 暴搜n,搜出当 S(n) >=