uva 12563 Jin Ge Jin Qu hao

2024-03-24 08:48
文章标签 uva ge hao qu jin 12563

本文主要是介绍uva 12563 Jin Ge Jin Qu hao,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原题:
(If you smiled when you see the title, this problem is for you ^_^)
For those who don’t know KTV, see: http://en.wikipedia.org/wiki/Karaoke_box
There is one very popular song called Jin Ge Jin Qu(). It is a mix of 37 songs, and is extremely
long (11 minutes and 18 seconds) — I know that there are Jin Ge Jin Qu II and III, and some other
unofficial versions. But in this problem please forget about them.
Why is it popular? Suppose you have only 15 seconds left (until your time is up), then you should
select another song as soon as possible, because the KTV will not crudely stop a song before it ends
(people will get frustrated if it does so!). If you select a 2-minute song, you actually get 105 extra
seconds! ….and if you select Jin Ge Jin Qu, you’ll get 663 extra seconds!!!
Now that you still have some time, but you’d like to make a plan now. You should stick to the
following rules:
• Don’t sing a song more than once (including Jin Ge Jin Qu).
• For each song of length t, either sing it for exactly t seconds, or don’t sing it at all.
• When a song is finished, always immediately start a new song.
Your goal is simple: sing as many songs as possible, and leave KTV as late as possible (since we
have rule 3, this also maximizes the total lengths of all songs we sing) when there are ties.
Input
The first line contains the number of test cases T (T ≤ 100). Each test case begins with two positive
integers n, t (1 ≤ n ≤ 50, 1 ≤ t ≤ 109), the number of candidate songs (BESIDES Jin Ge Jin Qu)
and the time left (in seconds). The next line contains n positive integers, the lengths of each song, in
seconds. Each length will be less than 3 minutes — I know that most songs are longer than 3 minutes.
But don’t forget that we could manually “cut” the song after we feel satisfied, before the song ends.
So here “length” actually means “length of the part that we want to sing”.
It is guaranteed that the sum of lengths of all songs (including Jin Ge Jin Qu) will be strictly larger
than t.
Output
For each test case, print the maximum number of songs (including Jin Ge Jin Qu), and the total lengths
of songs that you’ll sing.
Explanation:
In the first example, the best we can do is to sing the third song (80 seconds), then Jin Ge Jin Qu
for another 678 seconds.
In the second example, we sing the first two (30+69=99 seconds). Then we still have one second
left, so we can sing Jin Ge Jin Qu for extra 678 seconds. However, if we sing the first and third song
instead (30+70=100 seconds), the time is already up (since we only have 100 seconds in total), so we
can’t sing Jin Ge Jin Qu anymore!
Sample Input
2
3 100
60 70 80
3 100
30 69 70
Sample Output
Case 1: 2 758
Case 2: 3 777
大意:
给你一个数n和一个数t分别表示有n首歌和t分钟以及题目中已经告诉你的一个劲歌金曲,现在问你在t时间内最多能唱多少歌,能唱多长时间。而且能把那首劲歌金曲带上,唱歌唱到半道不会停。

#include <bits/stdc++.h>
using namespace std;
//fstream in,out;
const int jgjq=678;
int sdp[9700];
int cdp[9700];
int song[51],t,n;
int main()
{ios::sync_with_stdio(false);int Case;cin>>Case;for(int k=1;k<=Case;k++){cin>>n>>t;int tot=0;memset(sdp,0,sizeof(sdp));memset(cdp,0,sizeof(cdp));for(int i=1;i<=n;i++){cin>>song[i];tot+=song[i];}if(tot<t){cout<<"Case "<<k<<": "<<n+1<<" "<<tot+jgjq<<endl;continue;}for(int i=1;i<=n;i++){for(int j=t-1;j>=song[i];--j){if(cdp[j]<cdp[j-song[i]]+1){cdp[j]=cdp[j-song[i]]+1;sdp[j]=sdp[j-song[i]]+song[i];}if(cdp[j]==cdp[j-song[i]]+1)sdp[j]=max(sdp[j],sdp[j-song[i]]+song[i]);}}cout<<"Case "<<k<<": "<<cdp[t-1]+1<<" "<<sdp[t-1]+jgjq<<endl;}return 0;
}

解答:
刘汝佳紫书的例题,差不多是裸的01背包加上01背包计数问题,转移方程也是01背包的转移方程。这里注意选取唱歌最多的时间是在得到唱歌最多的基础上的。

这篇关于uva 12563 Jin Ge Jin Qu hao的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/841068

相关文章

uva 10055 uva 10071 uva 10300(水题两三道)

情歌两三首,水题两三道。 好久没敲代码了为暑假大作战热热身。 uva 10055 Hashmat the Brave Warrior 求俩数相减。 两个debug的地方,一个是longlong,一个是输入顺序。 代码: #include<stdio.h>int main(){long long a, b;//debugwhile(scanf("%lld%lld", &

poj 3259 uva 558 Wormholes(bellman最短路负权回路判断)

poj 3259: 题意:John的农场里n块地,m条路连接两块地,w个虫洞,虫洞是一条单向路,不但会把你传送到目的地,而且时间会倒退Ts。 任务是求你会不会在从某块地出发后又回来,看到了离开之前的自己。 判断树中是否存在负权回路就ok了。 bellman代码: #include<stdio.h>const int MaxN = 501;//农场数const int

poj 2349 Arctic Network uva 10369(prim or kruscal最小生成树)

题目很麻烦,因为不熟悉最小生成树的算法调试了好久。 感觉网上的题目解释都没说得很清楚,不适合新手。自己写一个。 题意:给你点的坐标,然后两点间可以有两种方式来通信:第一种是卫星通信,第二种是无线电通信。 卫星通信:任何两个有卫星频道的点间都可以直接建立连接,与点间的距离无关; 无线电通信:两个点之间的距离不能超过D,无线电收发器的功率越大,D越大,越昂贵。 计算无线电收发器D

uva 10387 Billiard(简单几何)

题意是一个球从矩形的中点出发,告诉你小球与矩形两条边的碰撞次数与小球回到原点的时间,求小球出发时的角度和小球的速度。 简单的几何问题,小球每与竖边碰撞一次,向右扩展一个相同的矩形;每与横边碰撞一次,向上扩展一个相同的矩形。 可以发现,扩展矩形的路径和在当前矩形中的每一段路径相同,当小球回到出发点时,一条直线的路径刚好经过最后一个扩展矩形的中心点。 最后扩展的路径和横边竖边恰好组成一个直

uva 10061 How many zero's and how many digits ?(不同进制阶乘末尾几个0)+poj 1401

题意是求在base进制下的 n!的结果有几位数,末尾有几个0。 想起刚开始的时候做的一道10进制下的n阶乘末尾有几个零,以及之前有做过的一道n阶乘的位数。 当时都是在10进制下的。 10进制下的做法是: 1. n阶位数:直接 lg(n!)就是得数的位数。 2. n阶末尾0的个数:由于2 * 5 将会在得数中以0的形式存在,所以计算2或者计算5,由于因子中出现5必然出现2,所以直接一

uva 568 Just the Facts(n!打表递推)

题意是求n!的末尾第一个不为0的数字。 不用大数,特别的处理。 代码: #include <stdio.h>const int maxn = 10000 + 1;int f[maxn];int main(){#ifdef LOCALfreopen("in.txt", "r", stdin);#endif // LOCALf[0] = 1;for (int i = 1; i <=

uva 575 Skew Binary(位运算)

求第一个以(2^(k+1)-1)为进制的数。 数据不大,可以直接搞。 代码: #include <stdio.h>#include <string.h>const int maxn = 100 + 5;int main(){char num[maxn];while (scanf("%s", num) == 1){if (num[0] == '0')break;int len =

uva 10014 Simple calculations(数学推导)

直接按照题意来推导最后的结果就行了。 开始的时候只做到了第一个推导,第二次没有继续下去。 代码: #include<stdio.h>int main(){int T, n, i;double a, aa, sum, temp, ans;scanf("%d", &T);while(T--){scanf("%d", &n);scanf("%lf", &first);scanf

uva 10916 Factstone Benchmark(打表)

题意是求 k ! <= 2 ^ n ,的最小k。 由于n比较大,大到 2 ^ 20 次方,所以 2 ^ 2 ^ 20比较难算,所以做一些基础的数学变换。 对不等式两边同时取log2,得: log2(k ! ) <=  log2(2 ^ n)= n,即:log2(1) + log2(2) + log2 (3) + log2(4) + ... + log2(k) <= n ,其中 n 为 2 ^

uva 10025 The ? 1 ? 2 ? ... ? n = k problem(数学)

题意是    ?  1  ?  2  ?  ...  ?  n = k 式子中给k,? 处可以填 + 也可以填 - ,问最小满足条件的n。 e.g k = 12  - 1 + 2 + 3 + 4 + 5 + 6 - 7 = 12 with n = 7。 先给证明,令 S(n) = 1 + 2 + 3 + 4 + 5 + .... + n 暴搜n,搜出当 S(n) >=