uva 435 Block Voting

2024-03-24 08:32
文章标签 block uva voting 435

本文主要是介绍uva 435 Block Voting,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原题:
Different types of electoral systems exist. In a block voting system the members of a party do not
vote individually as they like, but instead they must collectively accept or reject a proposal. Although a party with many votes clearly has more power than a party with few votes, the votes of a small party can nevertheless be crucial when they are needed to obtain a majority. Consider for example the following five-party system:
这里写图片描述
Coalition {A,B} has 7 + 4 = 11 votes, which is not a majority. When party C joins coalition {A,B},
however, {A,B,C} becomes a winning coalition with 7+4+2 = 13 votes. So even though C is a small
party, it can play an important role.As a measure of a party’s power in a block voting system, John F. Banzhaf III proposed to use the power index. The key idea is that a party’s power is determined by the number of minority coalitions that it can join and turn into a (winning) majority coalition. Note that the empty coalition is also a minority coalition and that a coalition only forms a majority when it has more than half of the total number of votes. In the example just given, a majority coalition must have at least 13 votes.
In an ideal system, a party’s power index is proportional to the number of members of that party.
Your task is to write a program that, given an input as shown above, computes for each party its
power index.
Input
The first line contains a single integer which equals the number of test cases that follow. Each of the following lines contains one test case.The first number on a line contains an integer P in [1 … 20] which equals the number of parties for that test case. This integer is followed by P positive integers, separated by spaces. Each of these integers represents the number of members of a party in the electoral system. The i-th number represents party number i. No electoral system has more than 1000 votes.
Output
For each test case, you must generate P lines of output, followed by one empty line. P is the number of parties for the test case in question. The i-th line (i in [1…P]) contains the sentence:
party i has power index I where I is the power index of party i.
Sample Input

3
5 7 4 2 6 6
6 12 9 7 3 1 1
3 2 1 1
Sample Output

party 1 has power index 10
party 2 has power index 2
party 3 has power index 2
party 4 has power index 6
party 5 has power index 6

party 1 has power index 18
party 2 has power index 14
party 3 has power index 14
party 4 has power index 2
party 5 has power index 2
party 6 has power index 2

party 1 has power index 3
party 2 has power index 1
party 3 has power index 1
中文:

给你n个数,现在要计算每个数的“指数”。假设这个数是a,所有的数的和是sum,那么除了a意外的所有的数进行组合,组得到的和在不超过sum/2的的情况下加上这个数a,那么a的指数就+1。如样例一里面,
7的指数是10,除了7以外,剩下的数进行组合有2^4=16种组合,其中有10种组合满足和小于13且加上7大于13。现在让你找出每个数的指数。

#include <bits/stdc++.h>
using namespace std;
int dp[1<<20+1];
int vote[21],ans[21];
int main()
{ios::sync_with_stdio(false);int n,t,tot,half;cin>>t;while(t--){cin>>n;tot=0;memset(ans,0,sizeof(ans));memset(dp,0,sizeof(dp));for(int i=1;i<=n;i++){cin>>vote[i];tot+=vote[i];}half=(tot)/2;for(int s=1;s<(1<<n);s++){for(int i=1;i<=n;i++){if(s>>(i-1)&1)dp[s]=dp[s&~(1<<(i-1))]+vote[i];}}for(int s=0;s<(1<<n);s++){for(int i=1;i<=n;i++){if(!(s>>(i-1)&1)){if(dp[s]+vote[i]>half&&dp[s]<=half)ans[i]++;}}}for(int i=1;i<=n;i++)cout<<"party "<<i<<" has power index "<<ans[i]<<endl;cout<<endl;}return 0;
}

解答:
很简单的状态压缩动态规划题目,很适合练手。一共有20个数,所以状态可以是2^20次幂个。设置dp[s]为集合s时数的和,如果集合s不超过总和的一半,且集合s当中没有第i个数。那么dp[s∪i]=dp[s]+vote[i]
其中vote[i]为第i个数是多少。

这篇关于uva 435 Block Voting的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/841028

相关文章

uva 10055 uva 10071 uva 10300(水题两三道)

情歌两三首,水题两三道。 好久没敲代码了为暑假大作战热热身。 uva 10055 Hashmat the Brave Warrior 求俩数相减。 两个debug的地方,一个是longlong,一个是输入顺序。 代码: #include<stdio.h>int main(){long long a, b;//debugwhile(scanf("%lld%lld", &

poj 3259 uva 558 Wormholes(bellman最短路负权回路判断)

poj 3259: 题意:John的农场里n块地,m条路连接两块地,w个虫洞,虫洞是一条单向路,不但会把你传送到目的地,而且时间会倒退Ts。 任务是求你会不会在从某块地出发后又回来,看到了离开之前的自己。 判断树中是否存在负权回路就ok了。 bellman代码: #include<stdio.h>const int MaxN = 501;//农场数const int

poj 2349 Arctic Network uva 10369(prim or kruscal最小生成树)

题目很麻烦,因为不熟悉最小生成树的算法调试了好久。 感觉网上的题目解释都没说得很清楚,不适合新手。自己写一个。 题意:给你点的坐标,然后两点间可以有两种方式来通信:第一种是卫星通信,第二种是无线电通信。 卫星通信:任何两个有卫星频道的点间都可以直接建立连接,与点间的距离无关; 无线电通信:两个点之间的距离不能超过D,无线电收发器的功率越大,D越大,越昂贵。 计算无线电收发器D

uva 10387 Billiard(简单几何)

题意是一个球从矩形的中点出发,告诉你小球与矩形两条边的碰撞次数与小球回到原点的时间,求小球出发时的角度和小球的速度。 简单的几何问题,小球每与竖边碰撞一次,向右扩展一个相同的矩形;每与横边碰撞一次,向上扩展一个相同的矩形。 可以发现,扩展矩形的路径和在当前矩形中的每一段路径相同,当小球回到出发点时,一条直线的路径刚好经过最后一个扩展矩形的中心点。 最后扩展的路径和横边竖边恰好组成一个直

uva 10061 How many zero's and how many digits ?(不同进制阶乘末尾几个0)+poj 1401

题意是求在base进制下的 n!的结果有几位数,末尾有几个0。 想起刚开始的时候做的一道10进制下的n阶乘末尾有几个零,以及之前有做过的一道n阶乘的位数。 当时都是在10进制下的。 10进制下的做法是: 1. n阶位数:直接 lg(n!)就是得数的位数。 2. n阶末尾0的个数:由于2 * 5 将会在得数中以0的形式存在,所以计算2或者计算5,由于因子中出现5必然出现2,所以直接一

uva 568 Just the Facts(n!打表递推)

题意是求n!的末尾第一个不为0的数字。 不用大数,特别的处理。 代码: #include <stdio.h>const int maxn = 10000 + 1;int f[maxn];int main(){#ifdef LOCALfreopen("in.txt", "r", stdin);#endif // LOCALf[0] = 1;for (int i = 1; i <=

uva 575 Skew Binary(位运算)

求第一个以(2^(k+1)-1)为进制的数。 数据不大,可以直接搞。 代码: #include <stdio.h>#include <string.h>const int maxn = 100 + 5;int main(){char num[maxn];while (scanf("%s", num) == 1){if (num[0] == '0')break;int len =

uva 10014 Simple calculations(数学推导)

直接按照题意来推导最后的结果就行了。 开始的时候只做到了第一个推导,第二次没有继续下去。 代码: #include<stdio.h>int main(){int T, n, i;double a, aa, sum, temp, ans;scanf("%d", &T);while(T--){scanf("%d", &n);scanf("%lf", &first);scanf

uva 10916 Factstone Benchmark(打表)

题意是求 k ! <= 2 ^ n ,的最小k。 由于n比较大,大到 2 ^ 20 次方,所以 2 ^ 2 ^ 20比较难算,所以做一些基础的数学变换。 对不等式两边同时取log2,得: log2(k ! ) <=  log2(2 ^ n)= n,即:log2(1) + log2(2) + log2 (3) + log2(4) + ... + log2(k) <= n ,其中 n 为 2 ^

uva 10025 The ? 1 ? 2 ? ... ? n = k problem(数学)

题意是    ?  1  ?  2  ?  ...  ?  n = k 式子中给k,? 处可以填 + 也可以填 - ,问最小满足条件的n。 e.g k = 12  - 1 + 2 + 3 + 4 + 5 + 6 - 7 = 12 with n = 7。 先给证明,令 S(n) = 1 + 2 + 3 + 4 + 5 + .... + n 暴搜n,搜出当 S(n) >=