移相全桥DC-DC变换器

2024-03-23 23:52
文章标签 dc 全桥 变换器 移相

本文主要是介绍移相全桥DC-DC变换器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本篇将基于PPEC-86CA3A移相全桥数字电源控制芯片以及PPEC Workbench开发软件带领大家进行实际移相全桥DC-DC变换器的设计与开发 。

一、移相全桥变换器设计与开发

1、外围电路设计与硬件平台搭建

1)外围电路设计

这里给出了PPEC-86CA3A移相全桥数字电源控制芯片的采样、PWM驱动以及硬件保护等外围电路设计图,大家可参考下图进行外围电路搭建与连接。

2)硬件平台搭建

大家可根据前文介绍的参数设计方法进行电源拓扑的器件选型,再按照外围电路设计图搭建PWM驱动电路、采样电路以及保护电路并与电源控制核心进行连接。移相全桥DC-DC变换器的硬件测试平台如图。

2、移相全桥快速开发

1)在PC端安装PPEC Workbench软件,并将电源控制核心PPEC-86CA3A与PC端进行连接;

2)打开PPEC Workbench软件,点击起始页“新建工程”或左侧工作栏“新建”按钮,进入工程项目新建导航页;

3) 选择“移相全桥(PFSB)”拓扑;

4) 设置控制参数;

工作模式:可以选择“恒压”输出以及“恒流”输出两种模式;

设定电压/设定电流:“恒压”模式下电源的输出额定电压 / “恒流”模式下电源的输出额定电流;

限定电流/限定电压:“恒压”模式下电源的输出最大电流限值 / “恒流”模式下电源的输出最大电压限值;

PWM频率:PWM信号的开关频率;

PWM死区时间:移相控制过程中PWM信号的死区时间;

KP/KI:PI环路中的比例系数/PI环路中的积分时间常数;

设定电压上限:设定电压/限定电压的设置最大值;

设定电流上限:设定电流/限定电流的设置最大值;

这里以恒压工作模式为例,设定电压100V,限定电流2A,其他参数可参考下图进行设计。

5) 设置启动参数;

设定主继电器闭合电压阈值以及主继电器闭合时间,当检测电压大于“主继电器闭合电压阈值”时,经过 "主继电器闭合时间" 继电器自动闭合,参数可参考下图进行设置。

6) 设置保护参数;

设置输入欠压、输入过压、输入过流、输出过压、输出过流、输出过载的保护阈值,可参考下图进行设置。当检测到某一参数超过设定的保护阈值时,电源控制核心会停止PWM输出,同时PPEC Workbench故障信息栏会显示具体的故障信息。

7) 选择通讯端口;

若存在设备连接可在端口号下拉菜单里进行端口选择,若不存在设备连接则端口号下拉为空。本例中的通讯端口为“COM3”。

8) “完成”新建移相全桥工程。

9) 设备连接

点击左侧工作栏“连接”按钮, 初次连接需要设置密码,一般为6位数字,初始密码为“666666”。

10) 参数下发

击工作栏“下发参数”按钮将已选择的参数一键下发至芯片,右键“下发参数”按钮可进行下发参数的勾选,可以选择部分参数进行下发。

待下发状态进度条加载完毕即完成参数下发。

11)点击工作栏“调试”按钮进入调试界面,调试界面可进行开环调试、采样校正、运行参数显示、控制参数设置、故障信息显示以及实时波形显示。

二、功能验证

1、采样校正

为了实现采样值与实际值的匹配,需通过设置采样的增益与偏置进行校正,这里以输出电压为例:

1)在电源设备非运行状态,外部稳压源连接到设备输出电压采样端;

2)调节外部电压源输出电压,记录两组不同的软件采样值与万用表测量的实际值;

3)在PPEC Workbench软件调试界面点击“采样校正”;

4)在①区切换到输出电压通道,在左侧(②、④)填入实际值,右侧(③、⑤)填入相应的采样值;

5)点击“校正”按钮,采样校正完成。

2、保护功能验证

在电源设计阶段已经对保护阈值进行设置,可点击工作栏“设置”按钮进行保护阈值的查询或修改。

为保障设备安全运行,在调试前对保护功能进行验证,这里以“输出过压保护”的功能验证为例:

1)在电源设备非运行状态,外部稳压源连接到设备输出电压采样端;

2)调节外部电压源输出至大于设定输出过压保护阈值(400V)的电压;

3)观察Workbench的故障信息栏是否显示“输出过压”故障信息。

设备其他的保护功能可参照上面的方法进行验证。

3、开环调试

在PPEC Workbench软件调试界面点击“开环调试”,在开环调试界面内对“移相角度”、“波形数量”和“PWM频率”进行设置,具体参数定义如下:

1)移相角度(0~359.9度):滞后臂与超前臂相差角度,取值范围为0 ~359.9度;

2)波形数量(0~65K):PWM脉冲数量,PWM到达脉冲数量后停止输出,设置0时则为连续输出模式,大于0则为脉冲输出模式;

3)PWM频率:PWM输出频率,取值范围0~100 kHz。

这里采用连续输出模式进行开环调试操作:首先设置移相角为90度,脉冲数量为0,PWM频率为20KHz,点击“输出”按键,利用万用表测量输出电压;然后调整移相角度为180度,用万用表测量输出电压。

两次操作的输出电压如图,移相90度输出电压为28.3V,移相180度输出电压为55.9V,符合开环输出移相控制规律。

4、闭环调试

开环验证无误后,点击PPEC Workbench软件设备控制区的“运行”按钮,并利用万用表测量输出电压,如下图(a)所示:设定电压100V,闭环输出电压稳定在99.7V,闭环调试结果符合预期。同样的,可以按照上述步骤进行恒流电源的设计与调试,这里就不再赘述,输出1A的恒流源的闭环调试结果如下图(b)。

完成调试之后,可通过工作栏“固化参数”功能将工程参数写入到PPEC-86CA3A芯片中,参数保存不受芯片掉电影响。然后可点击工作栏“保存”按钮将工程参数保存至本地。

以上就是利用PPEC-86CA3A进行移相全桥变换器的设计与开发的全部过程了,真的是十分简单便捷了。接下来就带大家简单了解一下今天我们用到的数字电源研发黑科技吧!

三、研发黑科技

1、PPEC-86CA3A

PPEC-86CA3A是一款应用于移相全桥电源拓扑的电源控制芯片,其内部囊括电力电子核心算法,可为电源研发企业提供稳定可靠的隔离型DC/DC控制方案。

2、PPEC Workbench

PPEC Workbench软件是武汉森木磊石科技有限公司研发的图形化编程平台,配合PPEC系列控制核心使用。其采用菜单式配置模式,设计流程清晰明了,参数观测清晰直观,无需代码编程即可实现电源的参数设计与开发,降低了电源开发门槛,为电源研发企业降本增效。

这篇关于移相全桥DC-DC变换器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/839910

相关文章

OCC开发_变高箱梁全桥建模

概述     上一篇文章《OCC开发_箱梁梁体建模》中详细介绍了箱梁梁体建模的过程。但是,对于实际桥梁,截面可能存在高度、腹板厚度、顶底板厚度变化,全桥的结构中心线存在平曲线和竖曲线。针对实际情况,通过一个截面拉伸来实现全桥建模显然不可能。因此,针对变高箱梁,本文新的思路来实现全桥建模。 思路 上一篇文章通过一个截面拉伸生成几何体的方式行不通,我们可以通过不同面来形成棱柱的方式实现。具体步骤

Keysight U8031A DC power supply

Keysight U8031A DC power supply 文章目录 Keysight U8031A DC power supply前言电容充电⽰意图一、恒定电压操作二、恒定电流操作三、5v操作四、跟踪模式操作五、存储器操作六、对过电压保护编程七、对过电流保护编程八、锁键操作 前言 U8031A Power Supply 是一款具备前面板编程能力的三路输出电源。通过使

Acrobat Pro DC 2023 for Mac/Win:全能型PDF编辑器深度解析

Adobe Acrobat Pro DC 2023作为一款跨平台的PDF编辑器,无论是对于Mac还是Windows用户,都提供了极为全面且强大的PDF处理功能。该软件凭借其卓越的性能和丰富的特性,成为了全球范围内用户处理PDF文档的首选工具。 一、强大的编辑功能 Acrobat Pro DC 2023内置了多种编辑工具,如文本编辑器、图片替换、页面调整等,使用户能够轻松地对PDF文档进行修改和

全桥整流器简介

使用二极管进行半波整流 “矫正”一词源自拉丁语,意思是“矫正”。因此,整流电路吸收沿两个方向移动的电流并将其“整流”,使其仅沿一个方向移动。二极管的定义特征是它允许电流在一个方向(阳极到阴极)相当自由地流动,并强烈反对电流在另一个方向(阴极到阳极)流动,因此听到所有半导体二极管都属于二极管也许并不奇怪。整流器的广泛类别。 整流交流电压仅需要一个二极管,如图 1 所示。请注意,图右侧的电阻器代表

【RoCE】拥塞控制机制(ECN, DC-QCN)

1.网络拥塞问题 在网络交换机中,当入口流量大于出口流量的带宽时会发生网络拥塞。典型的例子是多个发送方同时向同一个目的地发送网络数据。交换机的缓存可以处理暂时的拥塞,但是当拥塞太久时,交换机的缓存就会过载。当交换机缓存过载时,下一个收到的新的数据包就会被丢弃。丢包会降低应用性能,因为重传和传输协议的复杂性会带来延迟。无损网络实现了流控制机制,它可以在缓存溢出前暂停入口流量,阻止了丢包现象。然而,

Vulnhub靶场 | DC系列 - DC9

文章目录 DC-9环境搭建渗透测试端口敲门服务 DC-9 环境搭建 靶机镜像下载地址:https://vulnhub.com/entry/dc-6,315/需要将靶机和 kali 攻击机放在同一个局域网里;本实验kali 的 IP 地址:192.168.10.146。 渗透测试 使用 nmap 扫描 192.168.10.0/24 网段存活主机 ┌──(root💀k

Vulnhub靶场 | DC系列 - DC8

文章目录 DC-8环境搭建渗透测试 DC-8 环境搭建 靶机镜像下载地址:https://vulnhub.com/entry/dc-6,315/需要将靶机和 kali 攻击机放在同一个局域网里;本实验kali 的 IP 地址:192.168.10.146。 渗透测试 使用 nmap 扫描 192.168.10.0/24 网段存活主机 ┌──(root💀kali)-[~/

Vulnhub靶场 | DC系列 - DC7

文章目录 DC-7环境搭建渗透测试 DC-7 环境搭建 靶机镜像下载地址:https://vulnhub.com/entry/dc-6,315/需要将靶机和 kali 攻击机放在同一个局域网里;本实验kali 的 IP 地址:192.168.10.146。 渗透测试 使用 nmap 扫描 192.168.10.0/24 网段存活主机 ┌──(root💀kali)-[~/

Vulnhub靶场 | DC系列 - DC4

文章目录 DC-4环境搭建渗透测试 DC-4 环境搭建 靶机镜像下载地址:https://vulnhub.com/entry/dc-4,313/需要将靶机和 kali 攻击机放在同一个局域网里;本实验kali 的 IP 地址:192.168.10.146。 渗透测试 使用 nmap 扫描 192.168.10.0/24 网段存活主机 ┌──(root💀kali)-[~/

Vulnhub靶场 | DC系列 - DC-3

文章目录 DC-3环境搭建渗透测试 DC-3 环境搭建 靶机镜像下载地址:https://vulnhub.com/entry/dc-32,312/需要将靶机和 kali 攻击机放在同一个局域网里;本实验kali 的 IP 地址:192.168.10.146。 渗透测试 使用 nmap 扫描 192.168.10.0/24 网段存活主机 ┌──(root💀kali)-[~