【LeetCode】升级打怪之路 Day 26:回溯算法 — 集合划分问题

2024-03-23 21:12

本文主要是介绍【LeetCode】升级打怪之路 Day 26:回溯算法 — 集合划分问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

今日题目:

  • 698. 划分为k个相等的子集 | LeetCode
  • 473. 火柴拼正方形 | LeetCode

参考文章:

  • 经典回溯算法:集合划分问题

目录

      • LC 698. 划分为k个相等的子集 【classic,有难度】
        • 数据预处理:计算 target
        • 基本回溯
        • 优化 1:跳过某些 bucket 的选择
        • 优化 2:事先对 nums 排序
        • 最终代码事先
      • LC 473. 火柴拼正方形 【练习】

集合划分问题是使用回溯算法来解决的一类问题。这类问题的抽象描述是:给定 n 个数,让我们划分成 k 组,使得这 k 组的每组数的 sum 一样大。这类问题也有固定的套路思路,学会就行了。

LC 698. 划分为k个相等的子集 【classic,有难度】

698. 划分为k个相等的子集 | LeetCode

我们可以理解为有 k 个桶,我们需要尝试将各个数字分别放入所有桶中,使得每个桶的 sum 都相等。

基本思路就是采用回溯算法,在“做选择”这一步,就是将一个数字分别选择放入各个不同的桶中,这样回溯决策树的第 i 层就是决定将 nums[i] 放入哪个 bucket 中。

但这种基本的回溯就等同于暴力搜索了,在 LeetCode 中提交后会出现超时错误,解决方法就是优化某些步骤,尽可能地剪枝

数据预处理:计算 target

这一步很重要。因为我们是让每个 bucket 中的 sum 都相等,那自然每个 bucket 的 sum 就等于 所有数字的加和 / bucket 数量,所以我们先计算出 target,也就是最终每个 bucket 中的所有数字的累加需要达到的目标。

int sum = Arrays.stream(sum).sum();
// 如果 sum 不能平分,则直接可以判定找不到答案
if (sum % k != 0) {return false;
}
int target = sum / k;  // 每个 bucket 的累加需要达到的目标

通过上面我们计算出了 target,就可以在回溯时提前判断当 bucket 的数字累加超过了 target 时,就可以提前剪枝了

基本回溯

由此,我们可以写出如下的解决代码:

class Solution {private boolean backtrack(int[] buckets, int target, int[] nums, int k, int level) {if (level >= nums.length) {for (int bucket: buckets) {if (bucket != target) {return false;}}return true;}int num = nums[level];for (int i = 0; i < k; i++) {  // 遍历各个 bucketint sum = buckets[i] + num;  // 如果做出选择后,这个 bucket 的累加和if (sum > target) {  // 如果超出了 target,就提前剪枝continue;}buckets[i] = sum;boolean ok = backtrack(buckets, target, nums, k, level + 1);if (ok) {return true;}buckets[i] -= num;}return false;}public boolean canPartitionKSubsets(int[] nums, int k) {int sum = Arrays.stream(nums).sum();if (sum % k != 0) {return false;}int target = sum / k;int[] buckets = new int[k];Arrays.fill(buckets, 0);return backtrack(buckets, target, nums, k, 0);}
}

这个思路是没问题了,但是很遗憾,还是复杂度过高,超时。

优化 1:跳过某些 bucket 的选择

这里存在一个重要优化:当你做选择想把某个 num 放入一个 bucket 时,如果这个 bucket 的累加和与上一个 bucket 的累加和相同,那把这个 num 放入当前这个 bucket 的结果与放入上一个 bucket 的结果是一样的,上一个选择没有让我们找出答案,那这一次选择也不会让我们找出答案,因此可以直接剪枝跳过

由此,在上面的代码中,我们可以加入这样一个优化:

优化
这个优化只需要让我们加一个小判断,就能剪掉很多枝。

优化 2:事先对 nums 排序

因为我们会判断当前 bucket 的和是否超过了 target 进而剪枝,那事先对 nums 逆序排序,将大的数字放在前面,就更快地出现剪枝,从而减小复杂度。所以,我们可以在一开始先对 nums 进行逆序排序

逆序排序

最终代码事先

在基本的回溯代码再加上上面两个优化后,就可以通过 LeetCode 的检测了。最终代码如下:

class Solution {private boolean backtrack(int[] buckets, int target, int[] nums, int k, int level) {if (level >= nums.length) {for (int bucket: buckets) {if (bucket != target) {return false;}}return true;}int num = nums[level];// 遍历各个 bucket 做选择for (int i = 0; i < k; i++) {// 如果当前桶和上一个桶内的元素和相等,则跳过// 原因:如果元素和相等,那么 nums[index] 选择上一个桶和选择当前桶可以得到的结果是一致的if (i != 0 && buckets[i] == buckets[i - 1]) {continue;}int sum = buckets[i] + num;  // 如果做出选择后,这个 bucket 的累加和if (sum > target) {   // 如果超出了 target,就提前剪枝continue;}buckets[i] = sum;boolean ok = backtrack(buckets, target, nums, k, level + 1);if (ok) {return true;}buckets[i] -= num;}return false;}public boolean canPartitionKSubsets(int[] nums, int k) {// 逆序排序 numsArrays.sort(nums);for (int low = 0, high = nums.length - 1; low < high; low++, high--) {int temp = nums[low];nums[low] = nums[high];nums[high] = temp;}int sum = Arrays.stream(nums).sum();if (sum % k != 0) {return false;}int target = sum / k;int[] buckets = new int[k];Arrays.fill(buckets, 0);return backtrack(buckets, target, nums, k, 0);}
}

LC 473. 火柴拼正方形 【练习】

[473. 火柴拼正方形 | LeetCode]

这个题目本质上和上个题目一样,可以当作练习。

这篇关于【LeetCode】升级打怪之路 Day 26:回溯算法 — 集合划分问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/839528

相关文章

mybatis和mybatis-plus设置值为null不起作用问题及解决

《mybatis和mybatis-plus设置值为null不起作用问题及解决》Mybatis-Plus的FieldStrategy主要用于控制新增、更新和查询时对空值的处理策略,通过配置不同的策略类型... 目录MyBATis-plusFieldStrategy作用FieldStrategy类型每种策略的作

linux下多个硬盘划分到同一挂载点问题

《linux下多个硬盘划分到同一挂载点问题》在Linux系统中,将多个硬盘划分到同一挂载点需要通过逻辑卷管理(LVM)来实现,首先,需要将物理存储设备(如硬盘分区)创建为物理卷,然后,将这些物理卷组成... 目录linux下多个硬盘划分到同一挂载点需要明确的几个概念硬盘插上默认的是非lvm总结Linux下多

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

pip install jupyterlab失败的原因问题及探索

《pipinstalljupyterlab失败的原因问题及探索》在学习Yolo模型时,尝试安装JupyterLab但遇到错误,错误提示缺少Rust和Cargo编译环境,因为pywinpty包需要它... 目录背景问题解决方案总结背景最近在学习Yolo模型,然后其中要下载jupyter(有点LSVmu像一个

解决jupyterLab打开后出现Config option `template_path`not recognized by `ExporterCollapsibleHeadings`问题

《解决jupyterLab打开后出现Configoption`template_path`notrecognizedby`ExporterCollapsibleHeadings`问题》在Ju... 目录jupyterLab打开后出现“templandroidate_path”相关问题这是 tensorflo

如何解决Pycharm编辑内容时有光标的问题

《如何解决Pycharm编辑内容时有光标的问题》文章介绍了如何在PyCharm中配置VimEmulator插件,包括检查插件是否已安装、下载插件以及安装IdeaVim插件的步骤... 目录Pycharm编辑内容时有光标1.如果Vim Emulator前面有对勾2.www.chinasem.cn如果tools工

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Java多线程父线程向子线程传值问题及解决

《Java多线程父线程向子线程传值问题及解决》文章总结了5种解决父子之间数据传递困扰的解决方案,包括ThreadLocal+TaskDecorator、UserUtils、CustomTaskDeco... 目录1 背景2 ThreadLocal+TaskDecorator3 RequestContextH

关于Spring @Bean 相同加载顺序不同结果不同的问题记录

《关于Spring@Bean相同加载顺序不同结果不同的问题记录》本文主要探讨了在Spring5.1.3.RELEASE版本下,当有两个全注解类定义相同类型的Bean时,由于加载顺序不同,最终生成的... 目录问题说明测试输出1测试输出2@Bean注解的BeanDefiChina编程nition加入时机总结问题说明

关于最长递增子序列问题概述

《关于最长递增子序列问题概述》本文详细介绍了最长递增子序列问题的定义及两种优化解法:贪心+二分查找和动态规划+状态压缩,贪心+二分查找时间复杂度为O(nlogn),通过维护一个有序的“尾巴”数组来高效... 一、最长递增子序列问题概述1. 问题定义给定一个整数序列,例如 nums = [10, 9, 2