一款 0 门槛轻松易上手的数据可视化工具

2024-03-23 20:58

本文主要是介绍一款 0 门槛轻松易上手的数据可视化工具,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在职场中有一项共识是:数据驱动业务价值。业务在产品、运营、开发、技术支持、销售等环节都有着大量的数据需求, 市面上也出现了很多 BI 可视化工具,但如果能同时具备以下特性,则可以称为一款优秀的 BI 工具:

  • 简易接入数据

  • 拖拽式生成图表

  • 快速计算数据

  • 定期发送周报

  • 支持移动端+PC 端

  • 不用钱

结合以上特点,来介绍一款由腾讯 TEG 团队打造的轻量级数据可视化工具——小马 BI。

先简单介绍一下这款产品。

0 门槛,想得出来就做的出来

通过简单的拖拽 就可以使用已接入的数据,编辑你的数据看板,所见即所得:

小马提供多达 26 种组件,涵盖“文本、表格、指标卡、折线图、柱形图、饼图、面积图、地图、雷达图、漏斗、散点图、热力图、词云”等所有主流可视化图表。

几乎能够满足你的一切数据可视化需求,随心所欲的挖掘业务数据的内涵,快速搭建你的业务看板。


高效快捷,不止减少重复劳动的快乐

  • 支持多种数据接入方式

  • 数据库直连、Excel 文件上传、SQL 建表、云端数据库、API 数据接入,仅需填写一个表单,即可瞬间接入数据,开始使用。

  • 简易数据清洗

    通过创建合表关联所需数据;通过筛选过滤,清除无效数据;通过数据格式设置,确保数据可读易于使用。

  • 秒级计算效率 在创建的过程当中,所有的图表均秒级生成,快速看到结果,及时响应,及时调整,贯彻敏捷之道。

  • 支持报表模板化推送 系统自动定期发送移动端、邮件报表,一次报表配送,解放你的周五。

甚至可以支持文本的动态变量(也就是连文字描述里面的数值都可以自动更新。)

跨平台,随时随地享受数据之美

PC 端导入用户,接入数据,进行简易的页面设计,即可发布给到对应有权限的用户进行查看;在移动端上,还支持支持通过微信公众号接收报表推送。

下面详细介绍下使用这款工具完成数据处理可视化的流程。

一.数据接入

小马 BI 的数据表接入分为“Excel 上传”、“SQL 建表”、“云端数据库”、“API 数据接入”、“多表关联”、“数据聚合”、“SQL 创建合表”等 7 种方式。

其中最常用的当属“SQL 建表”和“云端数据库建表”两种方式。以“SQL 建表”为例。首先要填写基础信息和选择链接的数据库,接下来就可以自由发挥。

小马支持包含:

“MySQL”、“PostgreSQL”、“SQLSever”、“Oracle”、“Elasticsearch”、“Hive”等主流数据库类型。

采用实时直连数据库方式并不存储数据,所以无需担心数据泄露。当然如果由于数据敏感性不能授权数据库连接也没关系,小马同样支持通过 API 方式进行数据接入。

二.数据处理

数据接入完成后就可以根据需要进行简单的 ETL。

小马支持对数据表字段名称、类型进行编辑操作,同时可以使用“计算字段”的功能加工处理一些分析过程中需要使用到的字段,比如我们想计算商品的利润率,就可以用原表中“利润”/“销售额”得到。

除此之外小马也能支持维表和数据表的关联,比如原表中销售地区是数字代号,只需要上次一张代号与地区的关系维表,并在字段类型中选择关联维表就可以完成关联操作。


三.可视化分析

数据处理完成后就可以开始进行可视化分析,首先计入“页面设计”,点击左上角的新增页面可以根据需要选择“新增页面”或“新增大屏页面”。页面建立完成后可以使用多达 28 种图表组件及筛选器。

Step1. 用文本组件和注释功能给你的页面做一个解释说明。

Step2. 通过指标表组件配置动态时间/固定时间的销量等核心信息,实时数据一目了然。

Step3.用折线图配置时间(可按小时、日、月、年聚合)销售走势,通过筛选器进行地区/时间范围筛选,了解趋势概况。

Step4. 了解销售趋势后再商品类目进行细化分析,总结品类的销量情况,可使用柱状图,并在图表中设置下钻来洞察子类目的详情。

Step5. 接下来使用地图组件来看下每个地区的销售情况,同样使用下钻功能进行省市的切换。

Step6. 除此之外,还可以进一步结合,通过设置联动组件来分析不同品类在不同地区的销售表现,辅助定制库存周期等策略

Step7. 到这里已对公司大致经营状况有所了解,接下来我们看下单个 SKU 的销售表现。使用表格组件选择需要分析的维度和数值,对关键性指标进行排序。还可以设置指标阈值或预警,当满足条件时 highlight 展示或推送。

Step8. 看完了商品销售数据后,我们对销售人员的业绩进行考核分析,这里就可以用到排行榜组件来展示各个维度下(地区/时间)销售人员的业绩排名。

Step9. 同样我们也可以按供货率、交货期、良率、账期等对供应商进行对比分析。这里用到词云组件来按销售额来发现优秀供应商。

Step10. 为了方便查看筛选,页面上还可以加上全局筛选组件,从多个维度进行页面级的筛选过滤。

至此我们已从“实时数据”、“整体趋势”、“品类分析”、“区域分析”、“商品分析”、“销售人员分析”、“供应商分析”几个维度了解到了公司经营状况。

最后:

以上就是小马 BI 的介绍,可点击前往 xiaoma.tencent.com 体验。

这篇关于一款 0 门槛轻松易上手的数据可视化工具的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/839501

相关文章

闲置电脑也能活出第二春?鲁大师AiNAS让你动动手指就能轻松部署

对于大多数人而言,在这个“数据爆炸”的时代或多或少都遇到过存储告急的情况,这使得“存储焦虑”不再是个别现象,而将会是随着软件的不断臃肿而越来越普遍的情况。从不少手机厂商都开始将存储上限提升至1TB可以见得,我们似乎正处在互联网信息飞速增长的阶段,对于存储的需求也将会不断扩大。对于苹果用户而言,这一问题愈发严峻,毕竟512GB和1TB版本的iPhone可不是人人都消费得起的,因此成熟的外置存储方案开

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

高效录音转文字:2024年四大工具精选!

在快节奏的工作生活中,能够快速将录音转换成文字是一项非常实用的能力。特别是在需要记录会议纪要、讲座内容或者是采访素材的时候,一款优秀的在线录音转文字工具能派上大用场。以下推荐几个好用的录音转文字工具! 365在线转文字 直达链接:https://www.pdf365.cn/ 365在线转文字是一款提供在线录音转文字服务的工具,它以其高效、便捷的特点受到用户的青睐。用户无需下载安装任何软件,只