联邦学习在腾讯微视广告投放中的实践

2024-03-23 18:38

本文主要是介绍联邦学习在腾讯微视广告投放中的实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

图片

分享人:宋凯 博士

整理者:林宜蓁

导读:

本文从广告主的角度,分享联邦学习实践的经验跟思考。

先介绍业务与技术选型背景:团队项目为用户增长及成本控制,方式为广告渠道投放,投放目标分为拉新、拉活两类。

  • 拉新时,微视侧端内用户特征稀疏,而广告平台积累大量信息,但仅有有限性的oCPX标准化数据回传。

  • 拉活时,微视侧具备用户行为序列等宝贵画像数据,与广告平台特征有互补性,但又无法直接粗暴的与广告平台共享数据。

所以,希望微视侧能与广告平台侧利用双方数据,实现收益共赢,但保证数据的安全不出域。在这种背景下我们团队选择了“联邦学习”,其为多方安全合作提供了一种解决方案。

文章围绕下面五点展开:

  • 联邦学习

  • 腾讯联邦学习平台 PowerFL

  • 微视广告投放整体业务

  • 广告投放联邦学习架构

  • 建模实践和细节介绍

一、联邦学习

首先,简介联邦学习(Federated Learning,FL)的先导知识。

1. 联邦学习背景

机器学习模型都是 data-driven,但现实里数据皆为孤岛:公司与公司之间、甚至部门与部门之间无法共享数据;直接的共享会侵犯用户的隐私,也损伤公司的利益。2016年 Google 的文章以输入法 NLP 为背景,提出用安卓手机终端在本地更新模型,这篇文章一般被认为是联邦学习的开端。随即,我国微众银行、腾讯等公司也做了许多开创性的工作。

联邦学习的基本定义为:在进行机器学习的过程中,各参与方可借助其他方数据进行联合建模。各方无需直接触达他方数据资源,即数据不出本地的情况下,安全进行数据联合训练,建立共享的机器学习模型。

2. 联邦学习的两种架构

  • 中心化联邦架构:早期发展包括 Google、微众银行,皆是此类架构。由可信赖的第三方(中央服务器)负责加密策略、模型分发、梯度聚合等。

  • 去中心化联邦架构:有时双方合作,找不到可信赖的第三方,各方需参与对等计算。此架构需要更多的加解密和参数传输操作,比如:n方参与时,需进行2n(n-1)次传输。这里可以认为加解密算法实际上扮演了第三方的角色。

3. 联邦学习的三种分类

  • 横向联邦学习:样本的联合,适用于特征重叠多,用户重叠少时的场景。比如:两个业务相似的公司,用户正交多但画像相似,可进行横向联邦学习,更像是一种数据变形的分布式机器学习。

  • 纵向联邦学习:特征的联合,适用于用户重叠多,特征重叠少时的场景。比如:广告主与广告平台,希望结合两方的特征进行训练。

  • 联邦迁移学习:参与者间的特征和样本重叠都很少时,可以考虑使用,但难度较高。

三种联邦学习交互的信息有异,受到的困扰也不同;比如:横向联邦学习时,各参与方数据异构,因此数据非独立同分布,也是联邦学习的研究热点。

目前纵向联邦学习已在我们业务中落地,也在探索联邦迁移学习、横向纵向的结合。

图片

4. 联邦学习与分布式机器学习比较

精度上界:联邦学习不像优化其他具体的排序、召回模型,更像是在数据安全限制下,去推动整个建模。所以,理论上把共享数据下分布式机器学习(Distributed Machine Learning,DML)的结果作为上限。

联邦学习(FL)与分布式机器学习(DML)比较

虽然有人把联邦学习作为一种分布式机器学习的特殊情况,但是与一般的DML相比,联邦学习仍存在如下区别:

  • 存在数据不共享的限制;

  • 各server节点对worker节点控制弱;

  • 通讯频率和成本较高。

二、腾讯联邦学习平台Angel PowerFL

从联邦学习发展开始,腾讯参与度就非常高。包括:制定发布《联邦学习白皮书2.0》、《腾讯安全联邦学习应用服务白皮书》等;基建方面,基于腾讯开源的智能学习平台Angel(https://github.com/Angel-ML/angel),构建PowerFL,目前内部开源;实践方面,在金融、广告、推荐场景,有多次尝试和落地。

1. 工程特色

腾讯联邦学习平台PowerFL除了易部署、兼容性好等机器学习平台基本要求,还有以下五个工程特色:

  • 学习架构:使用去中心化联邦架构,不依赖第三方;

  • 加密算法:实现并改进了各种常见的同态加密、对称和非对称加密算法;

  • 分布式计算:基于 Spark on Angel 的分布式机器学习框架;

  • 跨网络通信:利用 Pulsar 对跨网通信优化,增强稳定性,提供多方跨网络传输接口;

  • 可信赖执行环境:TEE(SGX等)的探索和支持。

2. 算法优化

另外,针对算法侧也做了许多优化:

  • 密文运算重写:基于 C++ GMP 重写密文运算库;

  • 数据求交优化:分别就双方和多方优化,特别是多方侧进行了理论上的改造(改进的 FNP 协议);

  • GP

这篇关于联邦学习在腾讯微视广告投放中的实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/839187

相关文章

Spring Boot 配置文件之类型、加载顺序与最佳实践记录

《SpringBoot配置文件之类型、加载顺序与最佳实践记录》SpringBoot的配置文件是灵活且强大的工具,通过合理的配置管理,可以让应用开发和部署更加高效,无论是简单的属性配置,还是复杂... 目录Spring Boot 配置文件详解一、Spring Boot 配置文件类型1.1 applicatio

tomcat多实例部署的项目实践

《tomcat多实例部署的项目实践》Tomcat多实例是指在一台设备上运行多个Tomcat服务,这些Tomcat相互独立,本文主要介绍了tomcat多实例部署的项目实践,具有一定的参考价值,感兴趣的可... 目录1.创建项目目录,测试文China编程件2js.创建实例的安装目录3.准备实例的配置文件4.编辑实例的

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

springboot集成Deepseek4j的项目实践

《springboot集成Deepseek4j的项目实践》本文主要介绍了springboot集成Deepseek4j的项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录Deepseek4j快速开始Maven 依js赖基础配置基础使用示例1. 流式返回示例2. 进阶

Android App安装列表获取方法(实践方案)

《AndroidApp安装列表获取方法(实践方案)》文章介绍了Android11及以上版本获取应用列表的方案调整,包括权限配置、白名单配置和action配置三种方式,并提供了相应的Java和Kotl... 目录前言实现方案         方案概述一、 androidManifest 三种配置方式

Spring Boot中定时任务Cron表达式的终极指南最佳实践记录

《SpringBoot中定时任务Cron表达式的终极指南最佳实践记录》本文详细介绍了SpringBoot中定时任务的实现方法,特别是Cron表达式的使用技巧和高级用法,从基础语法到复杂场景,从快速启... 目录一、Cron表达式基础1.1 Cron表达式结构1.2 核心语法规则二、Spring Boot中定

Ubuntu中Nginx虚拟主机设置的项目实践

《Ubuntu中Nginx虚拟主机设置的项目实践》通过配置虚拟主机,可以在同一台服务器上运行多个独立的网站,本文主要介绍了Ubuntu中Nginx虚拟主机设置的项目实践,具有一定的参考价值,感兴趣的可... 目录简介安装 Nginx创建虚拟主机1. 创建网站目录2. 创建默认索引文件3. 配置 Nginx4

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

Nginx实现高并发的项目实践

《Nginx实现高并发的项目实践》本文主要介绍了Nginx实现高并发的项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录使用最新稳定版本的Nginx合理配置工作进程(workers)配置工作进程连接数(worker_co