lora-scripts 训练IP形象

2024-03-23 17:20
文章标签 ip 训练 lora scripts 形象

本文主要是介绍lora-scripts 训练IP形象,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

CodeWithGPU | 能复现才是好算法CodeWithGPU | GitHub AI算法复现社区,能复现才是好算法icon-default.png?t=N7T8https://www.codewithgpu.com/i/Akegarasu/lora-scripts/lora-trainstable-diffusion打造自己的lora模型(使用lora-scripts)-CSDN博客文章浏览阅读1.1k次。accelerate config这个命令进入之后,对于多项选择的可以用上下键,或者使用(0,1,2...)去选择相关的选项,yes or no的直接输入然后回车,大部分配置项选择默认就可以了,我这里没有使用DeepSpeed,所以这一项,我选择的No,根据自己的实际情况去选就行了,不知道啥意思的可以挨个查下。比如要训练一个自己头像的模型,就可以拍一些自己的照片(20-50张,最少15张),要求画质清晰,脸部轮廓清楚,背景较为简单的照片。方式一,直接修改train.ps1文件,修改以下配置。_lora-scriptshttps://blog.csdn.net/weixin_50516745/article/details/132434104Stable Diffusion:使用XYZ脚本生成对比图进行LoRA模型测试教程 - 知乎如下图,我们先来看下Stable Diffusion生成的对比图。 这种对比图的制作离不开XYZ plot脚本,有时候我们需要根据不同的权重来生成一系列图来进行对比测试,以此来发现最优解,这时候我们就需要用到XYZ plot脚本。 …icon-default.png?t=N7T8https://zhuanlan.zhihu.com/p/634901715直接秋叶的lora-scripts,做的非常专业。

1.wd 1.4打标

2. 标签编辑器

主要就是把其中识别错误的tag做一些替换。

3.训练

配置一下数据集和模型

3.1 实验

Lion优化器,V100不支持bitsandbytes,用AdamW8bit会有问题,因此用Lion。

V1:

wd 1.4 tagger 达标,加了提示词,做了简单修改,模型rev122

snlion\\\(ip\\\), solo, white background, simple background, crewmate \(among us\), outline 

pretrained_model_name_or_path = "/home/image_team/image_team_docker_home/lgd/e_commerce_sd/stable-diffusion-webui/models/Stable-diffusion/revAnimated_v122.safetensors"
train_data_dir = "/home/image_team/image_team_docker_home/lgd/e_commerce_sd/data/sn/lion_lora_scripts/lion_v1/"
resolution = "512,512"
enable_bucket = true
min_bucket_reso = 256
max_bucket_reso = 1024
output_name = "lion"
output_dir = "/home/image_team/image_team_docker_home/lgd/e_commerce_sd/outputs/lion_rev_v1/"
save_model_as = "safetensors"
save_every_n_epochs = 2
max_train_epochs = 20
train_batch_size = 4
network_train_unet_only = false
network_train_text_encoder_only = false
learning_rate = 0.0001
unet_lr = 0.0001
text_encoder_lr = 1e-5
lr_scheduler = "cosine_with_restarts"
optimizer_type = "Lion"
lr_scheduler_num_cycles = 1
network_module = "networks.lora"
network_dim = 32
network_alpha = 32
logging_dir = "./logs"
caption_extension = ".txt"
shuffle_caption = true
keep_tokens = 0
max_token_length = 255
seed = 1337
prior_loss_weight = 1
clip_skip = 2
mixed_precision = "fp16"
save_precision = "fp16"
xformers = false
cache_latents = true
persistent_data_loader_workers = true
lr_warmup_steps = 0

 anything_v5

revanimated

V2:

进一步修改提示词,增加blip的结果,

这篇关于lora-scripts 训练IP形象的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/839019

相关文章

SpringBoot实现基于URL和IP的访问频率限制

《SpringBoot实现基于URL和IP的访问频率限制》在现代Web应用中,接口被恶意刷新或暴力请求是一种常见的攻击手段,为了保护系统资源,需要对接口的访问频率进行限制,下面我们就来看看如何使用... 目录1. 引言2. 项目依赖3. 配置 Redis4. 创建拦截器5. 注册拦截器6. 创建控制器8.

Linux限制ip访问的解决方案

《Linux限制ip访问的解决方案》为了修复安全扫描中发现的漏洞,我们需要对某些服务设置访问限制,具体来说,就是要确保只有指定的内部IP地址能够访问这些服务,所以本文给大家介绍了Linux限制ip访问... 目录背景:解决方案:使用Firewalld防火墙规则验证方法深度了解防火墙逻辑应用场景与扩展背景:

MiniGPT-3D, 首个高效的3D点云大语言模型,仅需一张RTX3090显卡,训练一天时间,已开源

项目主页:https://tangyuan96.github.io/minigpt_3d_project_page/ 代码:https://github.com/TangYuan96/MiniGPT-3D 论文:https://arxiv.org/pdf/2405.01413 MiniGPT-3D在多个任务上取得了SoTA,被ACM MM2024接收,只拥有47.8M的可训练参数,在一张RTX

Spark MLlib模型训练—聚类算法 PIC(Power Iteration Clustering)

Spark MLlib模型训练—聚类算法 PIC(Power Iteration Clustering) Power Iteration Clustering (PIC) 是一种基于图的聚类算法,用于在大规模数据集上进行高效的社区检测。PIC 算法的核心思想是通过迭代图的幂运算来发现数据中的潜在簇。该算法适用于处理大规模图数据,特别是在社交网络分析、推荐系统和生物信息学等领域具有广泛应用。Spa

2024.9.8 TCP/IP协议学习笔记

1.所谓的层就是数据交换的深度,电脑点对点就是单层,物理层,加上集线器还是物理层,加上交换机就变成链路层了,有地址表,路由器就到了第三层网络层,每个端口都有一个mac地址 2.A 给 C 发数据包,怎么知道是否要通过路由器转发呢?答案:子网 3.将源 IP 与目的 IP 分别同这个子网掩码进行与运算****,相等则是在一个子网,不相等就是在不同子网 4.A 如何知道,哪个设备是路由器?答案:在 A

SigLIP——采用sigmoid损失的图文预训练方式

SigLIP——采用sigmoid损失的图文预训练方式 FesianXu 20240825 at Wechat Search Team 前言 CLIP中的infoNCE损失是一种对比性损失,在SigLIP这个工作中,作者提出采用非对比性的sigmoid损失,能够更高效地进行图文预训练,本文进行介绍。如有谬误请见谅并联系指出,本文遵守CC 4.0 BY-SA版权协议,转载请联系作者并注

Detectorn2预训练模型复现:数据准备、训练命令、日志分析与输出目录

Detectorn2预训练模型复现:数据准备、训练命令、日志分析与输出目录 在深度学习项目中,目标检测是一项重要的任务。本文将详细介绍如何使用Detectron2进行目标检测模型的复现训练,涵盖训练数据准备、训练命令、训练日志分析、训练指标以及训练输出目录的各个文件及其作用。特别地,我们将演示在训练过程中出现中断后,如何使用 resume 功能继续训练,并将我们复现的模型与Model Zoo中的

linux下查看自己的外网ip

局域网的服务器是通过ADSL路由器连接外网的,但ADSL是从ISP运营商那儿通过动态获得IP的,那么我怎么知道自己的外网地址是多少呢? 今天得到几个办法: curl -s http://whatismyip.org wget http://whatismyip.org 然后再  cat index.html 也可以看到

多云架构下大模型训练的存储稳定性探索

一、多云架构与大模型训练的融合 (一)多云架构的优势与挑战 多云架构为大模型训练带来了诸多优势。首先,资源灵活性显著提高,不同的云平台可以提供不同类型的计算资源和存储服务,满足大模型训练在不同阶段的需求。例如,某些云平台可能在 GPU 计算资源上具有优势,而另一些则在存储成本或性能上表现出色,企业可以根据实际情况进行选择和组合。其次,扩展性得以增强,当大模型的规模不断扩大时,单一云平

linux下TCP/IP实现简单聊天程序

可以在同一台电脑上运行,在一个终端上运行服务器端,在一个终端上运行客户端。 服务器端的IP地址要和本地的IP相同,并分配端口号,客户端的默认设置为本地,端口号自动分配。 服务器端: #include <stdio.h>#include <stdlib.h>#include <errno.h>#include <string.h>#include <sys/types.