Pytorch打怪路(一)pytorch进行CIFAR-10分类(4)训练

2024-03-23 06:32

本文主要是介绍Pytorch打怪路(一)pytorch进行CIFAR-10分类(4)训练,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

pytorch进行CIFAR-10分类(4)训练

我的系列博文:

Pytorch打怪路(一)pytorch进行CIFAR-10分类(1)CIFAR-10数据加载和处理

Pytorch打怪路(一)pytorch进行CIFAR-10分类(2)定义卷积神经网络

Pytorch打怪路(一)pytorch进行CIFAR-10分类(3)定义损失函数和优化器

Pytorch打怪路(一)pytorch进行CIFAR-10分类(4)训练本文

Pytorch打怪路(一)pytorch进行CIFAR-10分类(5)测试

1、简述

经过前面的数据加载和网络定义后,就可以开始训练了,这里会看到前面遇到的一些东西究竟在后面会有什么用,所以这一步希望各位也能仔细研究一下

2、代码

for epoch in range(2):  # loop over the dataset multiple times 指定训练一共要循环几个epochrunning_loss = 0.0  #定义一个变量方便我们对loss进行输出for i, data in enumerate(trainloader, 0): # 这里我们遇到了第一步中出现的trailoader,代码传入数据# enumerate是python的内置函数,既获得索引也获得数据,详见下文# get the inputsinputs, labels = data   # data是从enumerate返回的data,包含数据和标签信息,分别赋值给inputs和labels# wrap them in Variableinputs, labels = Variable(inputs), Variable(labels) # 将数据转换成Variable,第二步里面我们已经引入这个模块# 所以这段程序里面就直接使用了,下文会分析# zero the parameter gradientsoptimizer.zero_grad()                # 要把梯度重新归零,因为反向传播过程中梯度会累加上一次循环的梯度# forward + backward + optimize      outputs = net(inputs)                # 把数据输进网络net,这个net()在第二步的代码最后一行我们已经定义了loss = criterion(outputs, labels)    # 计算损失值,criterion我们在第三步里面定义了loss.backward()                      # loss进行反向传播,下文详解optimizer.step()                     # 当执行反向传播之后,把优化器的参数进行更新,以便进行下一轮# print statistics                   # 这几行代码不是必须的,为了打印出loss方便我们看而已,不影响训练过程running_loss += loss.data[0]         # 从下面一行代码可以看出它是每循环0-1999共两千次才打印一次if i % 2000 == 1999:    # print every 2000 mini-batches   所以每个2000次之类先用running_loss进行累加print('[%d, %5d] loss: %.3f' %(epoch + 1, i + 1, running_loss / 2000))  # 然后再除以2000,就得到这两千次的平均损失值running_loss = 0.0               # 这一个2000次结束后,就把running_loss归零,下一个2000次继续使用print('Finished Training')
 

3、分析

①autograd


在第二步中我们定义网络时定义了前向传播函数,但是并没有定义反向传播函数,可是深度学习是需要反向传播求导的,
Pytorch其实利用的是Autograd模块来进行自动求导,反向传播
Autograd中最核心的类就是Variable了,它封装了Tensor,并几乎支持所有Tensor的操作,这里可以参考官方给的详细解释:
http://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html#sphx-glr-beginner-blitz-autograd-tutorial-py
以上链接详细讲述了variable究竟是怎么能够实现自动求导的,怎么用它来实现反向传播的。
这里涉及到计算图的相关概念,这里我不详细讲,后面会写相关博文来讨论这个东西,暂时不会对我们理解这个程序造成影响
只说一句, 想要计算各个variable的梯度,只需调用根节点的backward方法,Autograd就会自动沿着整个计算图进行反向计算
而在此例子中,根节点就是我们的loss,所以:

程序中的loss.backward()代码就是在实现反向传播,自动计算所有的梯度。

所以训练部分的代码其实比较简单:
running_loss和后面负责打印损失值的那部分并不是必须的,所以关键行不多,总得来说分成三小节
第一节:把最开始放在trainloader里面的数据给转换成variable,然后指定为网络的输入;
第二节:每次循环新开始的时候,要确保梯度归零
第三节:forward+backward,就是调用我们在第三步里面实例化的net()实现前传,loss.backward()实现后传
每结束一次循环,要确保梯度更新

这篇关于Pytorch打怪路(一)pytorch进行CIFAR-10分类(4)训练的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/837437

相关文章

如何使用celery进行异步处理和定时任务(django)

《如何使用celery进行异步处理和定时任务(django)》文章介绍了Celery的基本概念、安装方法、如何使用Celery进行异步任务处理以及如何设置定时任务,通过Celery,可以在Web应用中... 目录一、celery的作用二、安装celery三、使用celery 异步执行任务四、使用celery

SpringBoot使用minio进行文件管理的流程步骤

《SpringBoot使用minio进行文件管理的流程步骤》MinIO是一个高性能的对象存储系统,兼容AmazonS3API,该软件设计用于处理非结构化数据,如图片、视频、日志文件以及备份数据等,本文... 目录一、拉取minio镜像二、创建配置文件和上传文件的目录三、启动容器四、浏览器登录 minio五、

python-nmap实现python利用nmap进行扫描分析

《python-nmap实现python利用nmap进行扫描分析》Nmap是一个非常用的网络/端口扫描工具,如果想将nmap集成进你的工具里,可以使用python-nmap这个python库,它提供了... 目录前言python-nmap的基本使用PortScanner扫描PortScannerAsync异

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

业务中14个需要进行A/B测试的时刻[信息图]

在本指南中,我们将全面了解有关 A/B测试 的所有内容。 我们将介绍不同类型的A/B测试,如何有效地规划和启动测试,如何评估测试是否成功,您应该关注哪些指标,多年来我们发现的常见错误等等。 什么是A/B测试? A/B测试(有时称为“分割测试”)是一种实验类型,其中您创建两种或多种内容变体——如登录页面、电子邮件或广告——并将它们显示给不同的受众群体,以查看哪一种效果最好。 本质上,A/B测

MiniGPT-3D, 首个高效的3D点云大语言模型,仅需一张RTX3090显卡,训练一天时间,已开源

项目主页:https://tangyuan96.github.io/minigpt_3d_project_page/ 代码:https://github.com/TangYuan96/MiniGPT-3D 论文:https://arxiv.org/pdf/2405.01413 MiniGPT-3D在多个任务上取得了SoTA,被ACM MM2024接收,只拥有47.8M的可训练参数,在一张RTX

遮罩,在指定元素上进行遮罩

废话不多说,直接上代码: ps:依赖 jquer.js 1.首先,定义一个 Overlay.js  代码如下: /*遮罩 Overlay js 对象*/function Overlay(options){//{targetId:'',viewHtml:'',viewWidth:'',viewHeight:''}try{this.state=false;//遮罩状态 true 激活,f

利用matlab bar函数绘制较为复杂的柱状图,并在图中进行适当标注

示例代码和结果如下:小疑问:如何自动选择合适的坐标位置对柱状图的数值大小进行标注?😂 clear; close all;x = 1:3;aa=[28.6321521955954 26.2453660695847 21.69102348512086.93747104431360 6.25442246899816 3.342835958564245.51365061796319 4.87