数据可视化案例-基于NetworkX网络的美国飞机航线可视化

2024-03-22 21:50

本文主要是介绍数据可视化案例-基于NetworkX网络的美国飞机航线可视化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

NetworkX网络数据可视化

我们选用美国飞机航线的数据集,包括起始机场、终点、飞行时间等
注:此处数据集下载地址为:

数据集下载地址

import pandas as pd
import numpy as np 
flights = pd.read_csv('./input/flights.csv') 
flights.shape
flights.columns
Out:(5819079, 31)Index(['YEAR', 'MONTH', 'DAY', 'DAY_OF_WEEK', 'AIRLINE', 'FLIGHT_NUMBER','TAIL_NUMBER', 'ORIGIN_AIRPORT', 'DESTINATION_AIRPORT', 'SCHEDULED_DEPARTURE', 'DEPARTURE_TIME', 'DEPARTURE_DELAY', 'TAXI_OUT','WHEELS_OFF', 'SCHEDULED_TIME', 'ELAPSED_TIME', 'AIR_TIME', 'DISTANCE','WHEELS_ON', 'TAXI_IN', 'SCHEDULED_ARRIVAL', 'ARRIVAL_TIME','ARRIVAL_DELAY', 'DIVERTED', 'CANCELLED', 'CANCELLATION_REASON','AIR_SYSTEM_DELAY', 'SECURITY_DELAY', 'AIRLINE_DELAY','LATE_AIRCRAFT_DELAY', 'WEATHER_DELAY'],dtype='object')
## 检测缺失值
flights.isnull().any() 
Out:YEAR                   FalseMONTH                  FalseDAY                    FalseDAY_OF_WEEK            FalseAIRLINE                FalseFLIGHT_NUMBER          FalseTAIL_NUMBER             TrueORIGIN_AIRPORT         FalseDESTINATION_AIRPORT    FalseSCHEDULED_DEPARTURE    FalseDEPARTURE_TIME          TrueDEPARTURE_DELAY         TrueTAXI_OUT                TrueWHEELS_OFF              TrueSCHEDULED_TIME          TrueELAPSED_TIME            TrueAIR_TIME                TrueDISTANCE               FalseWHEELS_ON               TrueTAXI_IN                 TrueSCHEDULED_ARRIVAL      FalseARRIVAL_TIME            TrueARRIVAL_DELAY           TrueDIVERTED               FalseCANCELLED              FalseCANCELLATION_REASON     TrueAIR_SYSTEM_DELAY        TrueSECURITY_DELAY          TrueAIRLINE_DELAY           TrueLATE_AIRCRAFT_DELAY     TrueWEATHER_DELAY           Truedtype: bool

比如我们想找出哪个机场是热门中转机场,或是我们想从机场A飞到机场B,如果没有直达航班,如何最优选择路线(因为数据集中没有给出费用,所以我们找到时间最短的路线)

那么我们只需要提取三列:起始机场(ORIGIN_AIRPORT),终点机场(DESTINATION_AIRPORT),飞行时间(AIR_TIME),数据集中还包括了字段"CANCELLED",反映了是否取消了航班,所以我们先删除已取消的航班。

flights1 = flights[flights['CANCELLED'] == 0]
flights2 = flights1[['ORIGIN_AIRPORT','DESTINATION_AIRPORT','AIR_TIME']].reset_index(drop=True) ## 提取三列且重新建立索引
## 删除缺失值
flight2 = flights2[flights2['AIR_TIME'].notnull()]

我们先来看看总共有多少个机场

list(set(flights2['ORIGIN_AIRPORT']))[:5]
Out:['14685', '13360', 'ECP', '12892', '12177']

我们发现起始航班中有数字(不是机场名称的缩写),我们认为其是无效的,那么先删除起始机场和到达机场中包含数字的所有行

## 先将这一列转为字符串类型,因为其中的数字有可能是int类型有可能是字符串类型
flights2['ORIGIN_AIRPORT'] = flights2['ORIGIN_AIRPORT'].astype(str)
flights3 = flights2[flights2['ORIGIN_AIRPORT'].str.contains('1|2|3|4|5|6|7|8|9|0')==False]
list(set(flights3['ORIGIN_AIRPORT']))[:5]
Out:['ECP', 'STC', 'ADQ', 'HIB', 'BTV']

现在只留下了机场名的缩写,我们再检查到达机场,看看有没有包含数字。

list(set(flights3['DESTINATION_AIRPORT']))[:5]
len(set(flights3['DESTINATION_AIRPORT']))
## 很不错,也没有,那么我们开始进行下一步处理
Out:['ECP', 'STC', 'ADQ', 'BTV', 'HIB']322

现在将起始机场和到达机场作为节点,若要选择最短时间,其实跟选择最短路径一样,我们将边的属性weight设置为每个航线之间的飞行时间。

## 给图添加边和边的属性 
G = nx.Graph()
for i in range(len(flights3)):G.add_edge(flights3.iloc[i,0],flights3.iloc[i,1],weight = flights3.iloc[i,2])
## 比如我们现在想知道从'ANC'机场取'LAR'机场,如何转机所需时间最短
print(nx.dijkstra_path(G,'ANC','LAR'))
Out:['ANC', 'DEN', 'LAR']
## 画出航线的网络图
nx.draw(G, with_labels=True)

在这里插入图片描述
这样随机分布的机场不直观,也没办法获取机场的地理位置,所以我们把他们画到美国的地图上。

from mpl_toolkits.basemap import Basemap
## 读取机场的数据,包括机场的经纬度和所属的洲
airports = pd.read_csv('./input/airports.csv').drop(['AIRPORT','CITY','COUNTRY'],axis = 1) ## 直接将一些不需要的列删除
## m为生成的美国地图,其中的参数llrnrlon到urcrnrlon是设置美国的经度和维度范围
m = Basemap(projection='merc',llcrnrlon=-150,llcrnrlat=20,urcrnrlon=-50,urcrnrlat=60,lat_0 = 40,lon_0=-100, resolution='l',suppress_ticks=True)
mx,my = m(list(airports['LONGITUDE']),list(airports['LATITUDE']))
pos = {}
for i in range(len(airports)):pos[airports.iloc[i,0]] = (mx[i],my[i])   
## 根据航线来表现节点的大小
deg = nx.degree(G)
sizes = [ 10* deg[i] for i in G.nodes]
## 如果节点过小的话,则不加标签
labels = {i: i if deg[i] >= 20 else '' for i in G.nodes}
## 根据机场所在的洲决定机场节点的颜色,故先给节点添加state属性
for i in range(len(airports)):G.nodes[airports['IATA_CODE'][i]]['state'] = airports['STATE'][i]
## 按照G.nodes中航班的顺序,将其对应的洲排列在一个列表中
state = [ G.nodes[i]['state']   for i in G.nodes]## 将字符串转为数值,因为要按照洲添加颜色
a,indices = np.unique(state,return_inverse=True)
figure = plt.figure(figsize=(30,30))
nx.draw_networkx(G, pos,font_size=16,alpha=.8,width=.075, node_size=sizes,labels=labels,node_color=indices,edge_color='#9400D3')## 绘制地图
m.drawcountries()
m.drawstates()
# m.bluemarble()
m.drawcoastlines()plt.show()

在这里插入图片描述
从图中,我们可以看到东部主要是中转机场,航线比较多,机场也比较密集。

这篇关于数据可视化案例-基于NetworkX网络的美国飞机航线可视化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/836267

相关文章

基于Python打造一个可视化FTP服务器

《基于Python打造一个可视化FTP服务器》在日常办公和团队协作中,文件共享是一个不可或缺的需求,所以本文将使用Python+Tkinter+pyftpdlib开发一款可视化FTP服务器,有需要的小... 目录1. 概述2. 功能介绍3. 如何使用4. 代码解析5. 运行效果6.相关源码7. 总结与展望1

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Linux系统配置NAT网络模式的详细步骤(附图文)

《Linux系统配置NAT网络模式的详细步骤(附图文)》本文详细指导如何在VMware环境下配置NAT网络模式,包括设置主机和虚拟机的IP地址、网关,以及针对Linux和Windows系统的具体步骤,... 目录一、配置NAT网络模式二、设置虚拟机交换机网关2.1 打开虚拟机2.2 管理员授权2.3 设置子

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

SpringBoot使用OkHttp完成高效网络请求详解

《SpringBoot使用OkHttp完成高效网络请求详解》OkHttp是一个高效的HTTP客户端,支持同步和异步请求,且具备自动处理cookie、缓存和连接池等高级功能,下面我们来看看SpringB... 目录一、OkHttp 简介二、在 Spring Boot 中集成 OkHttp三、封装 OkHttp