RepLKNet实战:使用RepLKNet实现对植物幼苗的分类(非官方)(一)

2024-03-22 16:10

本文主要是介绍RepLKNet实战:使用RepLKNet实现对植物幼苗的分类(非官方)(一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

RepLKNet实战

  • 摘要
  • 论文解读
    • 论文的贡献
    • 挑战传统认知
    • 整体架构
  • 安装包
    • 1、安装timm
    • 2、安装apex
  • 数据增强Cutout和Mixup
  • 项目结构
  • 计算mean和std
  • 生成数据集

摘要

本文通过对植物幼苗分类的实际例子来感受一下超大核的魅力所在。这篇文章能让你学到:

  1. 通过对论文的解读,了解RepLKNet超大核的设计思想和架构。

  2. 如何使用数据增强,包括transforms的增强、CutOut、MixUp、CutMix等增强手段?

  3. 如何调用自定义的模型?

  4. 如何使用混合精度训练?

  5. 如何使用梯度裁剪防止梯度爆炸?

  6. 如何使用DP多显卡训练?

  7. 如何绘制loss和acc曲线?

  8. 如何生成val的测评报告?

  9. 如何编写测试脚本测试测试集?

  10. 如何使用余弦退火策略调整学习率?

论文解读

pytoch代码:https://github.com/DingXiaoH/RepLKNet-pytorch

论文翻译:https://wanghao.blog.csdn.net/article/details/124875771?spm=1001.2014.3001.5502

RepLKNet的作者受vision transformers (ViT) 最新进展的启发,提出了31×31的超大核模型,与小核 CNN 相比,大核 CNN 具有更大的有效感受野和更高的形状偏差而不是纹理偏差。借鉴 Swin Transformer 的宏观架构,提出了一种架构 RepLKNet。在 ImageNet 上获得 87.8% 的 top-1 准确率,在 ADE20K 上获得 56.0% mIoU,这在具有相似模型大小的最先进技术中非常具有竞争力。

img

论文的贡献

论文的主要贡献有:

  1. 总结了使用超大核的五条准则:

    • 用 depth-wise 超大卷积,最好再加底层优化。

    • 加 shortcut

    • 用小卷积核做重参数化

    • 要看下游任务的性能,不能只看 ImageNet 点数高低

    • 小 feature map 上也可以用大卷积,常规分辨率就能训大 kernel 模型

  2. 基于以上准则,简单借鉴 Swin Transformer 的宏观架构,我们提出了一种架构 RepLKNet,其中大量使用超大卷积,如 27x27、31x31 等。这一架构的其他部分非常简单,都是 1x1 卷积、Batch Norm 等喜闻乐见的简单结构,不用任何 attention。

  3. 基于超大卷积核,对有效感受野、shape bias(模型做决定的时候到底是看物体的形状还是看局部的纹理?)、Transformers 之所以性能强悍的原因等话题的讨论和分析。我们发现,ResNet-152 等传统深层小 kernel 模型的有效感受野其实不大,大 kernel 模型不但有效感受野更大而且更像人类(shape bias 高),Transformer 可能关键在于大 kernel 而不在于 self-attention 的具体形式。

挑战传统认知

RepLKNet的出现,打破了大家对CNN的固有的认知,主要有:

  1. 超大卷积不但不涨点,而且还掉点?RepLKNet证明,超大卷积在过去没人用,不代表其现在不能用。在现代 CNN 设计(shortcut、重参数化等)的加持下,kernel size 越大越涨点!

  2. 超大卷积效率很差?超大 depth-wise 卷积并不会增加多少 FLOPs。如果再加点底层优化,速度会更快,31x31 的计算密度最高可达 3x3 的 70 倍!

  3. 大卷积只能用在大 feature map 上?作者发现,在 7x7 的 feature map 上用 13x13 卷积都能涨点。

  4. ImageNet 点数说明一切?我们发现,下游(目标检测、语义分割等)任务的性能可能跟 ImageNet 关系不大。

  5. 超深 CNN(如 ResNet-152)堆叠大量 3x3,所以感受野很大?作者发现,深层小 kernel 模型有效感受野其实很小。反而少量超大卷积核的有效感受野非常大。

  6. Transformers(ViT、Swin 等)在下游任务上性能强悍,是因为 self-attention(Query-Key-Value 的设计形式)本质更强?作者用超大卷积核验证,发现kernel size 可能才是下游涨点的关键。

整体架构

作者也说了,架构就是用了Swin Transformer ,主要在于把 attention 换成超大卷积和与之配套的结构,再加一点 CNN 风格的改动。根据以上五条准则,RepLKNet 的设计元素包括 shortcut、depth-wise 超大 kernel、小 kernel 重参数化等。整体架构如下:

img

下面我们通过对植物幼苗分类的实际例子来感受一下超大核的魅力所在。

安装包

1、安装timm

使用pip就行,命令:

pip install timm

2、安装apex

下载apex库,链接: https://github.com/NVIDIA/apex,下载到本地文件夹。解压后进入到apex的目录安装依赖。在执行命令;

cd C:\Users\XX\Downloads\apex-master #进入apex目录
pip install -r requirements.txt

依赖安装完后,打开cmd,cd进入到刚刚下载完的apex-master路径下,运行:

python setup.py install

数据增强Cutout和Mixup

为了提高成绩我在代码中加入Cutout和Mixup这两种增强方式。实现这两种增强需要安装torchtoolbox。安装命令:

pip install torchtoolbox

Cutout实现,在transforms中。

from torchtoolbox.transform import Cutout
# 数据预处理
transform = transforms.Compose([transforms.Resize((224, 224)),Cutout(),transforms.ToTensor(),transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])

需要导入包:from timm.data.mixup import Mixup,

定义Mixup,和SoftTargetCrossEntropy

  mixup_fn = Mixup(mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None,prob=0.1, switch_prob=0.5, mode='batch',label_smoothing=0.1, num_classes=12)criterion_train = SoftTargetCrossEntropy()

参数详解:

mixup_alpha (float): mixup alpha 值,如果 > 0,则 mixup 处于活动状态。

cutmix_alpha (float):cutmix alpha 值,如果 > 0,cutmix 处于活动状态。

cutmix_minmax (List[float]):cutmix 最小/最大图像比率,cutmix 处于活动状态,如果不是 None,则使用这个 vs alpha。

如果设置了 cutmix_minmax 则cutmix_alpha 默认为1.0

prob (float): 每批次或元素应用 mixup 或 cutmix 的概率。

switch_prob (float): 当两者都处于活动状态时切换cutmix 和mixup 的概率 。

mode (str): 如何应用 mixup/cutmix 参数(每个’batch’,‘pair’(元素对),‘elem’(元素)。

correct_lam (bool): 当 cutmix bbox 被图像边框剪裁时应用。 lambda 校正

label_smoothing (float):将标签平滑应用于混合目标张量。

num_classes (int): 目标的类数。

项目结构

RepLKNet_demo
├─data
│  ├─Black-grass
│  ├─Charlock
│  ├─Cleavers
│  ├─Common Chickweed
│  ├─Common wheat
│  ├─Fat Hen
│  ├─Loose Silky-bent
│  ├─Maize
│  ├─Scentless Mayweed
│  ├─Shepherds Purse
│  ├─Small-flowered Cranesbill
│  └─Sugar beet
├─models
│  ├─__init__.py
│  └─replknet.py
├─RepLKNet-31B_ImageNet-1K_224.pth
├─mean_std.py
├─makedata.py
├─train.py
└─test.py

mean_std.py:计算mean和std的值。

makedata.py:生成数据集。

replknet.py:来自官方的pytorch版本的代码。

RepLKNet-31B_ImageNet-1K_224.pth:预训练权重。
下载链接:https://download.csdn.net/download/hhhhhhhhhhwwwwwwwwww/85456783?spm=1001.2014.3001.5503
使用官方的replknet.py有个位置报错,这是对DW卷积的优化,如果环境有问题,安装不上这个包,可以不采用DepthWiseConv2dImplicitGEMM卷积。
在这里插入图片描述

计算mean和std

为了使模型更加快速的收敛,我们需要计算出mean和std的值,新建mean_std.py,插入代码:

from torchvision.datasets import ImageFolder
import torch
from torchvision import transformsdef get_mean_and_std(train_data):train_loader = torch.utils.data.DataLoader(train_data, batch_size=1, shuffle=False, num_workers=0,pin_memory=True)mean = torch.zeros(3)std = torch.zeros(3)for X, _ in train_loader:for d in range(3):mean[d] += X[:, d, :, :].mean()std[d] += X[:, d, :, :].std()mean.div_(len(train_data))std.div_(len(train_data))return list(mean.numpy()), list(std.numpy())if __name__ == '__main__':train_dataset = ImageFolder(root=r'data1', transform=transforms.ToTensor())print(get_mean_and_std(train_dataset))

数据集结构:

image-20220221153058619

运行结果:

([0.3281186, 0.28937867, 0.20702125], [0.09407319, 0.09732835, 0.106712654])

把这个结果记录下来,后面要用!

生成数据集

我们整理还的图像分类的数据集结构是这样的

data
├─Black-grass
├─Charlock
├─Cleavers
├─Common Chickweed
├─Common wheat
├─Fat Hen
├─Loose Silky-bent
├─Maize
├─Scentless Mayweed
├─Shepherds Purse
├─Small-flowered Cranesbill
└─Sugar beet

pytorch和keras默认加载方式是ImageNet数据集格式,格式是

├─data
│  ├─val
│  │   ├─Black-grass
│  │   ├─Charlock
│  │   ├─Cleavers
│  │   ├─Common Chickweed
│  │   ├─Common wheat
│  │   ├─Fat Hen
│  │   ├─Loose Silky-bent
│  │   ├─Maize
│  │   ├─Scentless Mayweed
│  │   ├─Shepherds Purse
│  │   ├─Small-flowered Cranesbill
│  │   └─Sugar beet
│  └─train
│      ├─Black-grass
│      ├─Charlock
│      ├─Cleavers
│      ├─Common Chickweed
│      ├─Common wheat
│      ├─Fat Hen
│      ├─Loose Silky-bent
│      ├─Maize
│      ├─Scentless Mayweed
│      ├─Shepherds Purse
│      ├─Small-flowered Cranesbill
│      └─Sugar beet

新增格式转化脚本makedata.py,插入代码:

import glob
import os
import shutilimage_list=glob.glob('data1/*/*.png')
print(image_list)
file_dir='data'
if os.path.exists(file_dir):print('true')#os.rmdir(file_dir)shutil.rmtree(file_dir)#删除再建立os.makedirs(file_dir)
else:os.makedirs(file_dir)from sklearn.model_selection import train_test_split
trainval_files, val_files = train_test_split(image_list, test_size=0.3, random_state=42)
train_dir='train'
val_dir='val'
train_root=os.path.join(file_dir,train_dir)
val_root=os.path.join(file_dir,val_dir)
for file in trainval_files:file_class=file.replace("\\","/").split('/')[-2]file_name=file.replace("\\","/").split('/')[-1]file_class=os.path.join(train_root,file_class)if not os.path.isdir(file_class):os.makedirs(file_class)shutil.copy(file, file_class + '/' + file_name)for file in val_files:file_class=file.replace("\\","/").split('/')[-2]file_name=file.replace("\\","/").split('/')[-1]file_class=os.path.join(val_root,file_class)if not os.path.isdir(file_class):os.makedirs(file_class)shutil.copy(file, file_class + '/' + file_name)

完成上面的内容就可以开启训练和测试了,详见下面的链接:

这篇关于RepLKNet实战:使用RepLKNet实现对植物幼苗的分类(非官方)(一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/835641

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

Java中String字符串使用避坑指南

《Java中String字符串使用避坑指南》Java中的String字符串是我们日常编程中用得最多的类之一,看似简单的String使用,却隐藏着不少“坑”,如果不注意,可能会导致性能问题、意外的错误容... 目录8个避坑点如下:1. 字符串的不可变性:每次修改都创建新对象2. 使用 == 比较字符串,陷阱满

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本