GUROBI案例实战(六)——排产排程问题(2)

2024-03-22 02:52

本文主要是介绍GUROBI案例实战(六)——排产排程问题(2),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

更多可参考:https://github.com/Gurobi/modeling-examples/blob/master/food_manufacturing/food_manufacture_1.ipynb

一、问题简介

(1) 某厂商生产一种香皂的原材料有植物油脂和非植物油脂,其中植物油脂有两种,非植物油脂有三种,其中任一种都可制成香皂:
在这里插入图片描述
(2) 不同的时间购买原材料的价格不同:(单位: per ton)
在这里插入图片描述
(3)每种油脂的硬度也不同:
在这里插入图片描述

(4) 存储原材料会产生存储费用,5 per month per 1000 ton
(5) 一月份的时候每种油脂都存储了500 ton, 要求6月份结束的时候依然剩下相同的原材料
(6) 最终的香皂售价为150 per ton
(7) 该厂商每个月最多可以加工200 ton植物油脂和250 ton 非植物油脂;
(8) 加工过程中没有浪费,被加工的油脂的重量与最终的香皂的重量相同;
(9) 最终的香皂的硬度必须在3到6之间,香皂的硬度由油脂线性混合;

问:每个月应该买多少原材料和生产多少肥皂才能最大化这六个月的总利润?

二、建模

1、集合
t ∈ M o n t h s = { J a n , F e b , M a r , A p r , M a y , J u n } t \in Months= \set{ Jan, Feb,Mar,Apr,May,Jun } tMonths={Jan,Feb,Mar,Apr,May,Jun}
V = { V E G 1 , V E G 2 } V = \set{ VEG1, VEG2 } V={VEG1,VEG2}
N = { N V E G 1 , N V E G 2 , N V E G 3 } N = \set{ NVEG1, NVEG2, NVEG3 } N={NVEG1,NVEG2,NVEG3}
o ∈ O i l s = { V E G 1 , V E G 2 , N V E G 1 , N V E G 2 , N V E G 3 } o \in Oils = \set{VEG1, VEG2, NVEG1, NVEG2,NVEG3} oOils={VEG1,VEG2,NVEG1,NVEG2,NVEG3}
2、参数
price: 每吨香皂的售价
init_store: 一月份开始的原料存储量
target_store: 六月份剩余的原料存储量
store_cost : 每个月每1000吨原料的存储费用
veg_cap: 厂商每个月可以加工的植物油脂的量
nveg_cap:厂商每个月可以加工的非植物油脂的量
min_hardness:香皂要求的最小硬度
max_hardness:香皂要求的最大硬度
hardness(o): 每种油脂o的硬度
cost(o, t):每种油脂每个月的购买价格
3、决策变量
p r o d u c e t produce_{t} producet: 每个月生产肥皂的量
b u y o , t buy_{o,t} buyo,t:每个月购买油脂的量
c o n s u m o , t consum_{o,t} consumo,t:每个月消耗的油脂的量
s t o r e o , t store_{o,t} storeo,t:每个月存储的油脂的量
4、目标函数
最大化这六个月的净利润:
m a x z = ∑ t ∈ M o n p r i c e ∗ p r o d u c e t − ∑ t ∈ M o n ∑ o ∈ O i l s ( c o n s u m o , t ∗ c o s t o , t + s t o r e _ c o s t ∗ s t o r e o , t ) max z = \sum_{t\in Mon}price*produce_{t}-\sum_{t\in Mon} \sum_{o\in Oils} (consum_{o,t}*cost_{o,t}+store\_cost*store_{o,t}) maxz=tMonpriceproducettMonoOils(consumo,tcosto,t+store_coststoreo,t)
5、约束条件
(1)1月份的物质守恒约束:
i n i t _ s t o r e + b u y o , J a n = c u n s u m o , t + s t o r e o , t , o ∈ O i l s init\_store + buy_{o,Jan} = cunsum_{o,t}+store_{o,t}, o\in Oils init_store+buyo,Jan=cunsumo,t+storeo,t,oOils
(2) 2-6月份的物质守恒约束:
s t o r e o , t − 1 + b u y o , t = c u n s u m o , t + s t o r e o , t , o ∈ O i l s store_{o,t-1} + buy_{o,t} = cunsum_{o,t}+store_{o,t}, o\in Oils storeo,t1+buyo,t=cunsumo,t+storeo,t,oOils
(3) 6月份的剩余油脂约束:
s t o r e o , J u n = t a r g e t _ s t o r e , o ∈ O i l s store_{o,Jun} = target\_store, o\in Oils storeo,Jun=target_store,oOils
(4)油脂加工能力约束:
∑ o ∈ V c o n s u m o , t < = v e g _ c a p , t ∈ M o n \sum_{o \in V} consum_{o,t} <= veg\_cap, t\in Mon oVconsumo,t<=veg_cap,tMon
∑ o ∈ N c o n s u m o , t < = n v e g _ c a p , t ∈ M o n \sum_{o \in N} consum_{o,t} <= nveg\_cap, t\in Mon oNconsumo,t<=nveg_cap,tMon
(5)香皂硬度约束:
m i n _ h a r d n e s s ∗ p r o d u c t t < = ∑ o ∈ O i l s h a r d n e s s o ∗ c o n s u m o , t < = m a x h a r d n e s s ∗ p r o d u c t t min\_hardness*product_{t} <= \sum_{o\in Oils}hardness_{o}*consum_{o,t} <= max_hardness*product_{t} min_hardnessproductt<=oOilshardnessoconsumo,t<=maxhardnessproductt
(6)质量守恒约束:
∑ o ∈ O i l s c o n s u m o , t = p r o d u c e t , t ∈ M o n \sum_{o\in Oils}consum_{o,t}=produce_{t}, t\in Mon oOilsconsumo,t=producet,tMon

三、代码实现

import gurobipy as gb
from gurobipy import *# set
mon = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun'] # 有序的
veg = ['V1', 'V2']
nveg = ['N1','N2','N3']hardness = dict({'V1': 8.8,'V2': 6.1,'N1': 2.0,'N2': 4.2,'N3': 5.0
})init_store = dict({'V1': 500,'V2': 500,'N1': 500,'N2': 500,'N3': 500
})arcs, cost = gb.multidict({('Jan','V1'):110, ('Jan','V2'):120,('Jan','N1'):130,('Jan','N2'):110,('Jan','N3'):115,('Feb','V1'):130, ('Feb','V2'):130, ('Feb','N1'):110, ('Feb','N2'):90, ('Feb','N3'):115,('Mar','V1'):110, ('Mar','V2'):140, ('Mar','N1'):130, ('Mar','N2'):100, ('Mar','N3'):95,('Apr','V1'):120, ('Apr','V2'):110, ('Apr','N1'):120, ('Apr','N2'):120, ('Apr','N3'):125,('May','V1'):100, ('May','V2'):120, ('May','N1'):150, ('May','N2'):110, ('May','N3'):105,('Jun','V1'):90,  ('Jun','V2'):100, ('Jun','N1'):140, ('Jun','N2'):80, ('Jun','N3'):135
})
# parameters
price = 150 # 单位香皂的售价
veg_cap = 200 # 植物油脂的加工能力上限
nveg_cap = 250 # 非植物油脂的加工能力上限
min_hardness = 3 # 硬度的下限
max_hardness = 6
store_cost = 5 # 单位原料存储费用# model
model = gb.Model()
# decision var(各决策变量之间是满足某种关系的)
produce = model.addVars(mon, name = 'produce')
buy = model.addVars(arcs, name = 'buy')
consum = model.addVars(arcs, name = 'consum')
store = model.addVars(arcs, name = 'store')# constraints
oils = hardness.keys()
# 1月份的物质守恒约束
model.addConstrs((init_store[o] + buy['Jan', o] == consum['Jan', o] + store['Jan',o] for o in oils), name = 'Jan constraints')
# 2-6月份的物质守恒约束
model.addConstrs((store[mon[t-1],o] + buy[mon[t], o] == consum[mon[t], o] + store[mon[t],o] for t in range(1,len(mon)) for o in oils), name = 'other mon constraints' )
# 6月份的剩余油脂约束
model.addConstrs((store['Jun', o] == init_store[o] for o in oils), name = 'Jun constraints')
# 油脂加工能力约束
model.addConstrs((gb.quicksum(consum[t, v] for v in veg) <= veg_cap for t in mon), name = 'veg constraints')
model.addConstrs((gb.quicksum(consum[t, nv] for nv in nveg) <= nveg_cap for t in mon), name = 'nveg constraints')
# 香皂硬度约束
model.addConstrs((min_hardness*produce[t] <= gb.quicksum(hardness[o]*consum[t,o] for o in oils) for t in mon), name = 'min hardness constraints')
model.addConstrs((max_hardness*produce[t] >= gb.quicksum(hardness[o]*consum[t,o] for o in oils) for t in mon), name = 'min hardness constraints')
# 总的质量守恒约束
model.addConstrs((produce.sum(t,'*') == consum.sum(t, '*') for t in mon), name = 'per month total mass constraints')# objective
obj = price*produce.sum() - (buy.prod(cost) + store_cost*store.sum())
model.setObjective(obj, GRB.MAXIMIZE)# optimize
model.optimize()

在这里插入图片描述

这篇关于GUROBI案例实战(六)——排产排程问题(2)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/834385

相关文章

MySQL 多列 IN 查询之语法、性能与实战技巧(最新整理)

《MySQL多列IN查询之语法、性能与实战技巧(最新整理)》本文详解MySQL多列IN查询,对比传统OR写法,强调其简洁高效,适合批量匹配复合键,通过联合索引、分批次优化提升性能,兼容多种数据库... 目录一、基础语法:多列 IN 的两种写法1. 直接值列表2. 子查询二、对比传统 OR 的写法三、性能分析

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

PowerShell中15个提升运维效率关键命令实战指南

《PowerShell中15个提升运维效率关键命令实战指南》作为网络安全专业人员的必备技能,PowerShell在系统管理、日志分析、威胁检测和自动化响应方面展现出强大能力,下面我们就来看看15个提升... 目录一、PowerShell在网络安全中的战略价值二、网络安全关键场景命令实战1. 系统安全基线核查

PostgreSQL的扩展dict_int应用案例解析

《PostgreSQL的扩展dict_int应用案例解析》dict_int扩展为PostgreSQL提供了专业的整数文本处理能力,特别适合需要精确处理数字内容的搜索场景,本文给大家介绍PostgreS... 目录PostgreSQL的扩展dict_int一、扩展概述二、核心功能三、安装与启用四、字典配置方法

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

Redis出现中文乱码的问题及解决

《Redis出现中文乱码的问题及解决》:本文主要介绍Redis出现中文乱码的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 问题的产生2China编程. 问题的解决redihttp://www.chinasem.cns数据进制问题的解决中文乱码问题解决总结