算法刷题day34:并查集

2024-03-21 19:12
文章标签 算法 刷题 查集 day34

本文主要是介绍算法刷题day34:并查集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 引言
  • 一、合并集合
  • 二、连通块中点的数量
  • 三、网络分析
  • 四、格子游戏

引言

今天写的题集是并查集,其实感觉有两个难点,一个是,要维护多余的信息和路径压缩,另一个难点则是抽象出来合并集合的这个操作,还是要不断地练习,看别人怎么去做,加油!


一、合并集合

标签:并查集

思路:模板题,没啥说的

题目描述:

一共有 n 个数,编号是 1∼n,最开始每个数各自在一个集合中。现在要进行 m 个操作,操作共有两种:M a b,将编号为 a 和 b 的两个数所在的集合合并,如果两个数已经在同一个集合中,则忽略这个操作;
Q a b,询问编号为 a 和 b 的两个数是否在同一个集合中;输入格式
第一行输入整数 n 和 m。接下来 m 行,每行包含一个操作指令,指令为 M a b 或 Q a b 中的一种。输出格式
对于每个询问指令 Q a b,都要输出一个结果,如果 a 和 b 在同一集合内,则输出 Yes,否则输出 No。每个结果占一行。数据范围
1≤n,m≤105
输入样例:
4 5
M 1 2
M 3 4
Q 1 2
Q 1 3
Q 3 4
输出样例:
Yes
No
Yes

示例代码:

#include <bits/stdc++.h>using namespace std;typedef long long LL;
typedef pair<int,int> PII;
#define x first
#define y secondconst int N = 1e5+10;int n, m;
int p[N];int find(int x)
{if(p[x] != x) p[x] = find(p[x]);return p[x];
}int main()
{ios::sync_with_stdio(0); cin.tie(0); cout.tie(0);cin >> n >> m;for(int i = 1; i <= n; ++i) p[i] = i;while(m--){string op; cin >> op;int a, b; cin >> a >> b;int pa = find(a), pb = find(b);if(op == "M"){if(pa != pb) p[pa] = pb;}else{if(pa == pb) puts("Yes");else puts("No");}}return 0;
}

二、连通块中点的数量

标签:并查集

思路:其实就是另外维护一个数量的信息,可以把一个连通块有多少个点的数量放到根结点中,然后找数量就查根结点的数量,然后连边就把结点信息更新到新的根结点就行了。

题目描述:

给定一个包含 n 个点(编号为 1∼n)的无向图,初始时图中没有边。现在要进行 m 个操作,操作共有三种:C a b,在点 a 和点 b 之间连一条边,a 和 b 可能相等;
Q1 a b,询问点 a 和点 b 是否在同一个连通块中,a 和 b 可能相等;
Q2 a,询问点 a 所在连通块中点的数量;输入格式
第一行输入整数 n 和 m。接下来 m 行,每行包含一个操作指令,指令为 C a b,Q1 a b 或 Q2 a 中的一种。输出格式
对于每个询问指令 Q1 a b,如果 a 和 b 在同一个连通块中,则输出 Yes,否则输出 No。对于每个询问指令 Q2 a,输出一个整数表示点 a 所在连通块中点的数量每个结果占一行。数据范围
1≤n,m≤105
输入样例:
5 5
C 1 2
Q1 1 2
Q2 1
C 2 5
Q2 5
输出样例:
Yes
2
3

示例代码:

#include <bits/stdc++.h>using namespace std;typedef long long LL;
typedef pair<int,int> PII;
#define x first
#define y secondconst int N = 1e5+10;int n, m;
int p[N], cnt[N];int find(int x)
{if(p[x] != x) p[x] = find(p[x]);return p[x];
}int main()
{ios::sync_with_stdio(0); cin.tie(0); cout.tie(0);cin >> n >> m;for(int i = 1; i <= n; ++i) p[i] = i, cnt[i] = 1;while(m--){string op; cin >> op;int a, b;if(op == "C"){cin >> a >> b;a = find(a), b = find(b);if(a != b){p[a] = p[b];cnt[b] += cnt[a];}}else if(op == "Q1"){cin >> a >> b;a = find(a), b = find(b);if(a != b) puts("No");else puts("Yes");}else if(op == "Q2"){cin >> a;a = find(a);printf("%d\n", cnt[a]);}}return 0;
}

三、网络分析

标签:并查集

思路1:这道题乍一眼可以直接拿 B F S BFS BFS 做,就是正常的连边, 然后搜索,只用开一个额外的数组用来记录每次遍历到的点就行了。

思路2:可以拿并查集来做,每个点的信息就是当前结点到根结点中的所有途径的点的信息,类似于差分的思想。每次如果在一个点中加上一个值,就相当于在根结点中加上一个值,如果两个连通块合并那么就是给原先的根结点减去现在根结点的值即可。

题目描述:

小明正在做一个网络实验。他设置了 n 台电脑,称为节点,用于收发和存储数据。初始时,所有节点都是独立的,不存在任何连接。小明可以通过网线将两个节点连接起来,连接后两个节点就可以互相通信了。两个节点如果存在网线连接,称为相邻。小明有时会测试当时的网络,他会在某个节点发送一条信息,信息会发送到每个相邻的节点,之后这些节点又会转发到自己相邻
的节点,直到所有直接或间接相邻的节点都收到了信息。所有发送和接收的节点都会将信息存储下来。一条信息只存储一次。给出小明连接和测试的过程,请计算出每个节点存储信息的大小。输入格式
输入的第一行包含两个整数 n,m,分别表示节点数量和操作数量。节点从 1 至 n 编号。接下来 m 行,每行三个整数,表示一个操作。如果操作为 1 a b,表示将节点 a 和节点 b 通过网线连接起来。当 a = b 时,表示连接了一个自环,对网络没有实质影响。
如果操作为 2 p t,表示在节点 p 上发送一条大小为 t 的信息。输出格式
输出一行,包含 n 个整数,相邻整数之间用一个空格分割,依次表示进行完上述操作后节点 1 至节点 n 上存储信息的大小。数据范围
1≤n≤10000,1≤m≤105,1≤t≤100
输入样例1:
4 8
1 1 2
2 1 10
2 3 5
1 4 1
2 2 2
1 1 2
1 2 4
2 2 1
输出样例1:
13 13 5 3

示例代码1: BFS 7/10

#include <bits/stdc++.h>using namespace std;typedef long long LL;
typedef pair<int,int> PII;
#define x first
#define y secondconst int N = 1e4+10, M = 2 * N;int n, m;
int h[N], e[M], ne[M], idx;
int dist[N];
bool st[N];void add(int a, int b)
{e[idx] = b, ne[idx] = h[a], h[a] = idx++;
}void bfs(int S, int c)
{memset(st, 0, sizeof st);st[S] = true; dist[S] += c;queue<int> q; q.push(S);while(q.size()){int t = q.front(); q.pop();for(int i = h[t]; i != -1; i = ne[i]){int j = e[i];if(st[j]) continue;st[j] = true; dist[j] += c;q.push(j);}}
}int main()
{ios::sync_with_stdio(0); cin.tie(0); cout.tie(0);memset(h, -1, sizeof h);cin >> n >> m;while(m--){int op, a, b; cin >> op >> a >> b;if(op == 1){if(a == b) continue;add(a,b), add(b,a);}else{bfs(a,b);}}for(int i = 1; i <= n; ++i) cout << dist[i] << " ";return 0;
}

示例代码2: 并查集

#include <bits/stdc++.h>using namespace std;typedef long long LL;
typedef pair<int,int> PII;
#define x first
#define y secondconst int N = 1e4+10;int n, m;
int p[N], d[N];int find(int x)
{if(x == p[x] || p[x] == p[p[x]]) return p[x];int r = find(p[x]);d[x] += d[p[x]];p[x] = r;return r;
}int main()
{ios::sync_with_stdio(0); cin.tie(0); cout.tie(0);cin >> n >> m;for(int i = 1; i <= n; ++i) p[i] = i;while(m--){int op, a, b; cin >> op >> a >> b;int pa = find(a), pb = find(b);if(op == 1){if(pa == pb) continue;d[pa] -= d[pb];p[pa] = pb;}else{d[pa] += b;}}for(int i = 1; i <= n; ++i){if(i == find(i)) cout << d[i] << " ";else cout << d[i] + d[find(i)] << " ";}return 0;
}

四、格子游戏

标签:并查集

思路:如果当前两个点时是赢了的话,那么这两个点之前已经在一个集合里了。那么我们就可以用这样的思路,然后可以将这个点集转换为一维的,就是跟数组一样所有行挪到一行。

题目描述:

Alice和Bob玩了一个古老的游戏:首先画一个 n×n 的点阵(下图 n=3 )。接着,他们两个轮流在相邻的点之间画上红边和蓝边:直到围成一个封闭的圈(面积不必为 1)为止,“封圈”的那个人就是赢家。因为棋盘实在是太大了,他们的游戏实在是太长了!他们甚至在游戏中都不知道谁赢得了游戏。于是请你写一个程序,帮助他们计算他们是否结束了游戏?输入格式
输入数据第一行为两个整数 n 和 m。n表示点阵的大小,m 表示一共画了 m 条线。以后 m 行,每行首先有两个数字 (x,y),代表了画线的起点坐标,接着用空格隔开一个字符,
假如字符是 D,则是向下连一条边,如果是 R 就是向右连一条边。输入数据不会有重复的边且保证正确。输出格式
输出一行:在第几步的时候结束。假如 m 步之后也没有结束,则输出一行“draw”。数据范围
1≤n≤200,1≤m≤24000
输入样例:
3 5
1 1 D
1 1 R
1 2 D
2 1 R
2 2 D
输出样例:
4

示例代码:

#include <bits/stdc++.h>using namespace std;typedef long long LL;
typedef pair<int,int> PII;
#define x first
#define y secondconst int N = 40010;int n, m;
int p[N];int get(int x, int y)
{return x * n + y;
}int find(int x)
{if(x != p[x]) p[x] = find(p[x]);return p[x];
}int main()
{ios::sync_with_stdio(0); cin.tie(0); cout.tie(0);int res = 0;cin >> n >> m;for(int i = 1; i <= n * n; ++i) p[i] = i;for(int i = 1; i <= m; ++i){int x, y; string op; cin >> x >> y >> op;x--, y--;int a = get(x,y), b;if(op == "D"){b = get(x+1,y);}else{b = get(x,y+1);}a = find(a), b = find(b);if(a == b){res = i;break;}p[a] = b;}if(!res) cout << "draw" << endl;else cout << res << endl;return 0;
}

这篇关于算法刷题day34:并查集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/833637

相关文章

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个