算法打卡day24|回溯法篇04|Leetcode 93.复原IP地址、78.子集、90.子集II

2024-03-21 19:12

本文主要是介绍算法打卡day24|回溯法篇04|Leetcode 93.复原IP地址、78.子集、90.子集II,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

算法题

Leetcode 93.复原IP地址

题目链接:93.复原IP地址

大佬视频讲解:复原IP地址视频讲解

 个人思路

这道题和昨天的分割回文串有点类似,但这里是限制了只能分割3次以及分割块的数字大小,根据这些不同的条件用回溯法解决就好啦

解法
回溯法

把切割问题抽象为如下树形结构

回溯法三部曲

1.递归参数

这里的startIndex一定是需要的,因为不能重复分割,记录下一层递归分割的起始位置。

还需要一个变量pointNum,记录添加逗点的数量。

2.递归终止条件

本题明确要求只会分成4段,所以不能用切割线切到最后作为终止条件,而是分割的段数作为终止条件pointNum表示逗点数量,pointNum为3说明字符串分成了4段了。然后验证一下第四段是否合法,如果合法就加入到结果集里

3.单层搜索的逻辑

for (int i = startIndex; i < s.size(); i++)循环中 [startIndex, i] 这个区间就是截取的子串,需要判断这个子串是否合法。如果合法就在字符串后面加上符号.表示已经分割。如果不合法就结束本层循环,如图中剪掉的分支:

递归调用时,下一层递归的startIndex要从i+2开始(因为需要在字符串中加入了分隔符.),同时记录分割符的数量pointNum 要 +1。

回溯的时候,就将刚刚加入的分隔符. 删掉就可以了,pointNum也要-1。

判断子串是否合法

按题意看主要考虑到如下三点:

  • 段位以0为开头的数字不合法
  • 段位里有非正整数字符不合法
  • 段位如果大于255了不合法

class Solution {List<String> result = new ArrayList<String>();//结果列表StringBuilder stringBuilder = new StringBuilder();//收割子字符串public List<String> restoreIpAddresses(String s) {restoreIpAddressesHandler(s, 0, 0);return result;}public void restoreIpAddressesHandler(String s, int start, int number) {// number表示stringbuilder中ip段的数量// 如果start等于s的长度并且ip段的数量是4,则加入结果集,并返回if (start == s.length() && number == 4) {result.add(stringBuilder.toString());return;}// 如果start等于s的长度但是ip段的数量不为4,或者ip段的数量为4但是start小于s的长度,则直接返回if (start == s.length() || number == 4) {return;}// 剪枝:ip段的长度最大是3,并且ip段处于[0,255]for (int i = start; i < s.length() && i - start < 3 && Integer.parseInt(s.substring(start, i + 1)) >= 0&& Integer.parseInt(s.substring(start, i + 1)) <= 255; i++) {// 如果ip段的长度大于1,并且第一位为0的话,continueif (i + 1 - start > 1 && s.charAt(start) - '0' == 0) {continue;}stringBuilder.append(s.substring(start, i + 1));// 当stringBuilder里的网段数量小于3时,才会加点;如果等于3,说明已经有3段了,最后一段不需要再加点if (number < 3) {stringBuilder.append(".");}number++;restoreIpAddressesHandler(s, i + 1, number);number--;//回溯// 删除当前stringBuilder最后一个网段,注意考虑点的数量的问题stringBuilder.delete(start + number, i + number + 2);}}
}

时间复杂度:O(3^4);(IP地址最多包含4个数字,每个数字最多有3种可能的分割方式,则搜索树的最大深度为4,每个节点最多有3个子节点)

空间复杂度:O(n);(递归栈的深度最多为 n)


 Leetcode  78.子集

题目链接:78.子集

大佬视频讲解:子集视频讲解

个人思路

这是典型的子集问题,也就是找树的所有节点,利用回溯法,将所有节点都加入结果列表。

解法
回溯法

把求子集问题抽象为如下树形结构:

从图中红线部分,可以看出遍历这个树的时候,把所有节点都记录下来,就是要求的子集集合

回溯法三部曲

子集也是一种组合问题,因为它的集合是无序的,子集{1,2} 和 子集{2,1}是一样的。

1.递归函数参数

全局变量数组path为子集收集元素,二维数组result存放子集组合。(也可以放到递归函数参数里)

递归函数参数需要startIndex,因为求子集也是组合,组合是无序,取过的元素不会重复取,for就要从startIndex开始,而不是从0开始。

2.递归终止条件

如上图剩余集合为空的时候,就是叶子节点。也就是startIndex已经大于数组的长度了,就终止了,因为没有元素可取了

其实可以不需要加终止条件,因为startIndex >= nums.size(),本层for循环本来也结束了

3.单层搜索逻辑

求取子集问题,不需要任何剪枝!因为子集就是要遍历整棵树

class Solution {List<List<Integer>> result = new ArrayList<>();// 存放符合条件结果的集合LinkedList<Integer> path = new LinkedList<>();// 用来存放符合条件结果public List<List<Integer>> subsets(int[] nums) {subsetsHelper(nums, 0);return result;}private void subsetsHelper(int[] nums, int startIndex){result.add(new ArrayList<>(path));//把所有节点都记录下来,就是要求的子集集合if (startIndex >= nums.length){ //终止条件也可以不加return;}for (int i = startIndex; i < nums.length; i++){path.add(nums[i]);subsetsHelper(nums, i + 1);path.removeLast();//回溯}}
}

时间复杂度:O(n * 2^n));(循环n个元素,2^n表示所有可能的子集数量)

空间复杂度:O(n);(递归栈的深度最多为 n)


 Leetcode  90.子集II

题目链接:90.子集II

大佬视频讲解:子集II视频讲解

 个人思路

这道题和上面子集的区别就是,这道题里的集合里有重复元素了,而且求取的子集要去重,这就用到了之前组合问题中的同一层去重(树层去重), 去重要用到标记数组used

解法
回溯法

把子集问题抽象为如下树形结构

从图中可以看出,同一树层上重复取2 就要过滤掉同一树枝上可以重复取2,因为同一树枝上元素的集合才是唯一子集!

这道题的逻辑和 Leetcode  40.组合总和II 一样,搞清楚同一树层去重就能解决这道题。

class Solution {List<List<Integer>> result = new ArrayList<>();// 存放符合条件结果的集合LinkedList<Integer> path = new LinkedList<>();// 用来存放符合条件结果boolean[] used;//记录元素是否使用过,用来树层去重public List<List<Integer>> subsetsWithDup(int[] nums) {if (nums.length == 0){result.add(path);return result;}Arrays.sort(nums);used = new boolean[nums.length];//初始化一个全是false(0)的布尔数组subsetsWithDupHelper(nums, 0);return result;}private void subsetsWithDupHelper(int[] nums, int startIndex){result.add(new ArrayList<>(path));if (startIndex >= nums.length){return;}for (int i = startIndex; i < nums.length; i++){if (i > 0 && nums[i] == nums[i - 1] && !used[i - 1]){//树层重复continue;}path.add(nums[i]);used[i] = true;subsetsWithDupHelper(nums, i + 1);path.removeLast();//回溯used[i] = false;//回溯}}
}

时间复杂度:O(n * 2^n));(循环n个元素,2^n表示所有可能的子集数量)

空间复杂度:O(n);(递归栈的深度最多为 n)


 以上是个人的思考反思与总结,若只想根据系列题刷,参考卡哥的网址代码随想录算法官网

这篇关于算法打卡day24|回溯法篇04|Leetcode 93.复原IP地址、78.子集、90.子集II的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/833636

相关文章

哈希leetcode-1

目录 1前言 2.例题  2.1两数之和 2.2判断是否互为字符重排 2.3存在重复元素1 2.4存在重复元素2 2.5字母异位词分组 1前言 哈希表主要是适合于快速查找某个元素(O(1)) 当我们要频繁的查找某个元素,第一哈希表O(1),第二,二分O(log n) 一般可以分为语言自带的容器哈希和用数组模拟的简易哈希。 最简单的比如数组模拟字符存储,只要开26个c

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

常用的jdk下载地址

jdk下载地址 安装方式可以看之前的博客: mac安装jdk oracle 版本:https://www.oracle.com/java/technologies/downloads/ Eclipse Temurin版本:https://adoptium.net/zh-CN/temurin/releases/ 阿里版本: github:https://github.com/

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

90、k8s之secret+configMap

一、secret配置管理 配置管理: 加密配置:保存密码,token,其他敏感信息的k8s资源 应用配置:我们需要定制化的给应用进行配置,我们需要把定制好的配置文件同步到pod当中容器 1.1、加密配置: secret: [root@master01 ~]# kubectl get secrets ##查看加密配置[root@master01 ~]# kubectl get se