LeetCode 5 迅速判断回文串的曼切斯特算法

2024-03-21 14:48

本文主要是介绍LeetCode 5 迅速判断回文串的曼切斯特算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题意

Given a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000.Link: https://leetcode.com/problems/longest-palindromic-substring/

翻译

给定一个字符串s,要求它当中的最长回文子串。可以假设s串的长度最大是1000。

样例

Example 1:
Input: "babad"Output: "bab"Note: "aba" is also a valid answer.Example 2:
Input: "cbbd"Output: "bb"

分析

虽然LeetCode里给这道题的难度是Medium,但实际上并不简单,我们通过自己思考很难想到最佳解法。

我们先把各种算法放在一边,先从最简单的方法开始。最简单的方法当然是暴力枚举,但是这道题和之前的字符串问题不同。我们在暴力枚举的时候,并不需要枚举所有的起始位置,再判断这个子串是否回文。实际上我们可以利用回文串两边相等的性质,直接枚举回文串的中心位置,如果两边相等就往两边延伸。这样我们最多需要枚举n个回文中心,每次枚举最多遍历n次。所以最终的复杂度是 O ( n 2 ) O(n^2) O(n2)

有经验的同学看到这个复杂度就能反应过来,这明显不是最优解法。但是对于当前问题,暴力枚举固然不是最佳解法,但其实也算得上是不错了,并没有我们想的那么糟糕,不信的话,我们来看另一个看起来高端很多的解法。


动态规划(DP)


这道题中利用回文串的性质还有一个trick,对于一个字符串S,如果我们对它进行翻转,得到S_,显然它当中的回文子串并不会发生变化。所以如果我们对翻转前后的两个字符串求最长公共子序列的话,得到的结果就是回文子串。

算法导论当中对这个问题的讲解是使用动态规划算法,即是对于字符串S中所有的位置i和S_中所有的位置j,我们用一个dp数组记录下以i和j结尾的S和S_的子串能够组成的公共子序列的最大的结果。

显然,对于i=0,j=0,dp[i][j] = 0(假设字符串下标从1开始)

我们写出DP的代码:

for i in range(1, n):for j in range(1, m):if S[i] == S_[j]:dp[i][j] = dp[i-1][j-1] + 1else:dp[i][j] = max(dp[i-1][j], dp[i][j-1])

我们不难观察出来,这种解法的复杂度同样是 O ( n 2 ) O(n^2) O(n2)。并且空间复杂度也是 O ( n ) O(n) O(n),也就是说我们费了这么大劲,并没有起到任何优化。所以从这个角度来看,暴力搜索并不是这题当中很糟糕的解法。

分析到了这里,也差不多了,下面我们直接进入正题,这题的最佳解法, O ( n ) O(n) O(n)时间内获取最大回文子串的曼彻斯特算法。


曼切斯特算法


回文串除了我们刚刚提到的性质之外,还有一个性质,就是它分奇偶。简而言之,就是回文串的长度可以是奇数也可以是偶数。如果是奇数的话,那么回文串的回文中心就是一个字符,如果是偶数的话,它的回文中心其实是落在两个字符中间。

举个例子:

ABA和ABBA都是回文串,前者是奇回文,后者是偶回文。

这两种情况不一致,我们想要一起讨论比较困难,为了简化问题,我们需要做一个预处理,将所有的回文串都变成奇回文。怎么做呢,其实很简单,我们在所有两个字符当中都插入一个特殊字符#。

比如:

abba -> #a#b#b#a#

这样一来,回文中心就变成中间的#了。我们再来看原本是奇回文的情况:

aba -> #a#b#a#

回文中心还是在b上,依然还是奇回文。
预处理的代码:

def preprocess(text):new_str = '#'for c in text:new_str += c + '#'return new_str

曼切斯特算法用到三个变量,分别是数组p,idx和mr。我们接下来一个一个介绍。

首先是数组radis,它当中存在的是每个位置能构成的最长回文串的半径。注意,这里不是长度,是半径。

我们举个例子:

字符串S     # a # b # b # a #
radis      1 2 1 2 5 2 1 2 1

我们先不去想这个radis数组应该怎么求,我们来看看它的性质。

首先,i位置的回文串的半径是radis[i],那么它的长度是多少?很简单: radis[2] * 2 - 1。那么,这个串中去掉#之后剩下的长度是多少?也就是说预处理之前的长度是多少?

答案是radis[i] - 1,推算也很简单,总长度是radis[i] * 2 - 1,其中#比字母的数量多一个,所以原串的长度是(radis[i] * 2 - 1 - 1)/2 = radis[i] - 1。

也就是说原串的长度和radis数组就算是挂钩了。

idx很好理解,它就是指的是数组当中的一个下标,最后是mr,它是most_right的缩写。它记录的是在当前位置i之前的回文串所向右能延伸到的最远的位置。

听起来有些拗口,我们来看个例子:

此时i小于mr,mr对应的回文中心是id。那么i在id的回文范围当中,对于i而言,我们可以获取到它关于id的对称位置:id * 2 - i,我们令它等于i_。知道这个对称的位置有什么用呢?很简单,我们可以快速的确定radis[i]的下界。在遍历到i的时候,我们已经有了i_位置的结果。通过i_位置的结果,我们可以推算i位置的范围。

radis[i] >= min(radis[i_], mr-i)

为什么是这个结果呢?

我们把情况写全,假设mr-i > radis[i_]。那么i_位置的回文串全部都落在id位置的回文串里。这个时候,我们可以确定radis[i]=radis[i_]。为什么呢?

因为根据对称原理,如果以i为中心的回文串更长的话,我们假设它的长度是radis[i_]+1。会导致什么后果呢?如果这个发生,那么根据关于id的对称性,这个字符串关于id的对称位置也是回文的。那么radis[i_1]也应该是这么多才对,这就构成了矛盾。如果你从文字描述看不明白的话,我们来看下面这个例子:

S:       c a b c b d b c b a 
cradis:    x_  i_  5   i   x

在这个例子当中,mr-i=5,radis[i_]=2。所以mr - i > radis[i_]。如果radis[i]=3,那么x的位置就应该等于id的位置,同理根据对称性,x_的位置也应该等于id的位置。那么radis[i_]也应该是3。这就和它等于2矛盾,所以这是不可能出现的,在mr距离足够远的情况下,radis[i_]的值限制了i位置的可能性。

我们再来看另一种情况,如果mr - i < radis[i_]时会怎么样呢?

在这种情况下,由于mr距离i太近,导致i对称位置的半径无法在i位置展开。但是mr的右侧可能还存在字符,这些字符可以构成新的回文吗?

字符串S     XXXXXXXXSXXXXXXXXXXXXXXX
radis        i_    id    i mr

也就是说S[mr+1]会和S[i*2-mr-1]的位置相同吗?
其实我们可以不用判断就可以知道答案,答案是不会。
我们来看图:

根据对称性,如果mr+1的位置对于i可以构成新的对称。由于radis[i_] > mr-i,也就是说对于i_位置而言,它的对称范围能够辐射到mr对称点的左边。我们假设这个地方的字母是a,根据对称性,我们可以得出mr+1的位置也应该是a。如此一来,这两个a又能构成新的对称,那么id位置的半径就可以再拓展1,这就构成了矛盾。所以,这种情况下,由于mr-i的限制,使得radis[i]只能等于mr - i。

那什么情况下i位置的半径可以继续拓展呢?

只有mr - i == radis[i_]的时候,id构成的回文串的左侧对于i_可能构不成新的回文,但是右侧却存在这种可能性。

在上图这个例子当中,i_的位置的回文串向左只能延伸到ml,因为ml-1的位置和关于i_对称的位置不相等。对于mr的右侧,它完全可以既和i点对称,又不会影响raids[id]的正确性。这个时候,我们就可以通过循环继续遍历,拓展i位置的回文串。

整个过程的分析虽然很多,也很复杂,但是写成代码却并不多。

# 初始化
idx, mr = 0, 0
# 为了防止超界,设置字符串从1开始
for i in range(1, n):# 通过对称性直接计算radis[i]radis[i] = 1 if mr <= i else min(radis[2 * idx - i], mr - i)# 只有radis[i_] = mr - i的时候才继续往下判断if radis[2 * idx - i] != mr - i and mr > i:continue# 继续往下判断后面的位置while s[radis[i] + i] == s[i - radis[i]]:radis[i] += 1# 更新idx和mr的位置if radis[i] + i > mr:mr = radis[i] + iidx = i

到这里,曼切斯特算法就算是实现完了。虽然我们用了这么多篇幅去介绍它,可是真正写出来,它只有几行代码而已。不得不说,实在是非常巧妙,第一次学习可能需要反复思考,才能真正理解。

不过我们还有一个问题没有解决,为什么这样一个两重循环的算法会是O(n)的复杂度呢?

想要理解这一点,需要我们抛开所有的虚幻来直视本质。虽然我们并不知道循环进行了多少次,但是有两点可以肯定。通过这两点,我们就可以抓到复杂度的本质。

第一点,mr是递增的,只会变大,不会减小。
第二点,mr的范围是0到n,每次mr增加的数量就是循环的次数。

所以即使我们不知道mr变化了多少次,每次变化了多少,我们依然可以确定,这是一个O(n)的算法。

到这里,文章的内容就结束了,如果喜欢的话,请点个关注吧~

这篇关于LeetCode 5 迅速判断回文串的曼切斯特算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/832936

相关文章

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

C++实现回文串判断的两种高效方法

《C++实现回文串判断的两种高效方法》文章介绍了两种判断回文串的方法:解法一通过创建新字符串来处理,解法二在原字符串上直接筛选判断,两种方法都使用了双指针法,文中通过代码示例讲解的非常详细,需要的朋友... 目录一、问题描述示例二、解法一:将字母数字连接到新的 string思路代码实现代码解释复杂度分析三、

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Java判断多个时间段是否重合的方法小结

《Java判断多个时间段是否重合的方法小结》这篇文章主要为大家详细介绍了Java中判断多个时间段是否重合的方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录判断多个时间段是否有间隔判断时间段集合是否与某时间段重合判断多个时间段是否有间隔实体类内容public class D

Python判断for循环最后一次的6种方法

《Python判断for循环最后一次的6种方法》在Python中,通常我们不会直接判断for循环是否正在执行最后一次迭代,因为Python的for循环是基于可迭代对象的,它不知道也不关心迭代的内部状态... 目录1.使用enuhttp://www.chinasem.cnmerate()和len()来判断for

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1