21. 深度学习 - 拓朴排序的原理和实现

2024-03-21 08:40

本文主要是介绍21. 深度学习 - 拓朴排序的原理和实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录


在这里插入图片描述

Hi,你好。我是茶桁。

上节课,我们讲了多层神经网络的原理,并且明白了,数据量是层级无法超过3层的主要原因。

然后我们用一张图来解释了整个链式求导的过程:

Alt text

那么,我们如何将这张图里的节点关系来获得它的求导过程呢?

假如我们现在定义一个函数get_output:

def get_output(graph, node):outputs = []for n, links in graph.items():if node == n: outputs += linksreturn outputs
get_output(computing_graph, 'k1')---
['L1']

我们可以根据k1获得l1。

来,让我们整理一下思路,问:如何获得k1的偏导:

  1. 获得k1的输出节点
  2. 获得k1输出节点的输出节点
  3. …直到我们找到最后一个节点
computing_order = []target = 'k1'
out = get_output(computing_graph, target)[0]
computing_order.append(target)while out:computing_order.append(out)out = get_output(computing_graph, out)if out: out = out[0]computing_order---
['k1', 'L1', 'sigmoid', 'L2', 'loss']

我们从k1出发,它可以获得这么一套顺序。那么现在如果要计算k1的偏导,我们的这个偏导顺序就等于从后到前给它求解一遍。

order = ''for i, n in enumerate(computing_order[:-1]):order += '*∂{} / ∂{}'.format(n, computing_order[i+1])order
---
'*∂k1 / ∂L1*∂L1 / ∂sigmoid*∂sigmoid / ∂L2*∂L2 / ∂loss'

现在k1的求导顺序计算机就给它自动求解出来了, 我们把它放到了一个图里面,然后它自动就求解出来了。只不过唯一的问题是现在这个order是反着的,需要把它再反过来。

for i, n in enumerate(computing_order[:-1]):order.append((computing_order[i + 1], n))# order += ' * ∂{} / ∂{}'.format(n, computing_order[i+1])' * '.join(['∂{}/∂{}'.format(a, b) for a, b in order[::-1]])---
'∂loss/∂L2 * ∂L2/∂sigmoid * ∂sigmoid/∂L1 * ∂L1/∂k1'

这个过程用计算机实现之后,我们就可以拿它来看一下其他的参数,比如说b1:

computing_order = []target = 'b1'
out = get_output(computing_graph, target)[0]
computing_order.append(target)while out:computing_order.append(out)out = get_output(computing_graph, out)if out: out = out[0]order = []for i, n in enumerate(computing_order[:-1]):order.append((computing_order[i + 1], n))# order += ' * ∂{} / ∂{}'.format(n, computing_order[i+1])' * '.join(['∂{}/∂{}'.format(a, b) for a, b in order[::-1]])---
'∂loss/∂L2 * ∂L2/∂sigmoid * ∂sigmoid/∂L1 * ∂L1/∂b1'

k2:

...
target = 'k2'
...---
'∂loss/∂L2 * ∂L2/∂k2'

到这里, 我们能够自动的求解各个参数的导数了。

然后我们将其封装一下,然后循环一下每一个参数:

def get_paramter_partial_order(p):...target = p...return ...for p in ['b1', 'k1', 'b2', 'k2']:print(get_paramter_partial_order(p))---
∂loss/∂L2 * ∂L2/∂sigmoid * ∂sigmoid/∂L1 * ∂L1/∂b1
∂loss/∂L2 * ∂L2/∂sigmoid * ∂sigmoid/∂L1 * ∂L1/∂k1
∂loss/∂L2 * ∂L2/∂b2
∂loss/∂L2 * ∂L2/∂k2

到这一步你就能够发现,每一个参数的导数的偏导我们都可以求解了。而且我们还发现一个问题,不管是['b1', 'k1', 'b2', 'k2']中的哪一个,我们都需要求求解∂loss/∂L2

所以现在如果有一个内存能够记录结果,先把∂loss/∂L2的值求解下来,把这个值先存下来,只要算出来这一个值之后,再算['b1', 'k1', 'b2', 'k2']的时候直接拿过来就行了。

也就是说我们首先需要记录的就是这个值,其次,如果我们把L2和sigmoid的值记下来,求解b1和k1的时候直接拿过来用就行,不需要再去计算一遍,这个时候我们的效率就会提升很多。

首先把共有的一个基础∂loss/∂L2计算了, 第二步,有了∂loss/∂L2,把∂L2/∂sigmoid再记录一遍, 第三个是∂sigmoid/∂L1,然后后面以此就是∂L1/∂b1, ∂L1/∂k1∂L2/∂b2, ∂L2/∂k2

现在的问题就是就是怎么样让计算机自动得到这个顺序,计算机得到这个顺序的时候,把这些值都存在某个地方。

这个所谓的顺序就是我们非常重要的一个概念,在计算机科学,算法里面非常重要的一个概念:「拓朴排序」。

那拓朴排序该如何实现呢?来,我们一起来实现一下:

首先,我们定义一个方法,咱们输入的是一个图,这个图的定义方式是一个Dictionary,然后里面有一些节点,里面的很多个连接的点:

def topologic(graph):'''graph: dict{node: [node1, node2, ..., noden]}'''return None

因为我们要把它的结果存在一个变量里边,当我们不断的检查看这个图,看看它是否为空,然后我们来定义两个存储变量:

def topologic(graph):sorted_node = []while graph:all_inputs = []all_outputs = list(graph.keys())return sorted_node

这里的两个变量,all_inputsall_outputs, 一个是用来存储所有的输入节点,一个是存储所有的输出节点。

我们还记得我们那个图的格式是什么样的吗?

computing_graph = {'k1': ['L1'],'b1': ['L1'],'x': ['L1'],'L1':['sigmoid'],'sigmoid': ['L2'],'k2': ['L2'],'b2': ['L2'],'L2': ['loss'],'y': ['loss']
}

我们看这个数据,那所有的输出节点是不是就是其中的key啊?

打比方说,我们拿一个短小的数据来做示例:

simple_graph = {'a': [1, 2],'b': [3, 4]
}list(simple_graph.keys())---
['a', 'b']

那我们这样就拿到了输出节点,并将其放在了一个列表内。

这里说点其他的,Python 3.9及以上的版本其实都实现了自带拓朴排序,但是如果你的Python版本较低,那还是需要自己去实现。这个也是Python 3.9里面一个比较重要的更新。

那为什么我们的value定义的是一个列表呢?这是因为这个key,也就是输出值可能会输出到好几个函数里面,因为我们现在拿的是一个比较简单的模型,但是在真实场景中,有可能会输出到更多的节点中。

这里,就获得了所有有输入的节点, simple_graph中,a输出给了[1,2], b输出给了[2,3]。

那我们怎么获得所有输入的节点呢?那就应该是value。

list(simple_graph.values())---
[[1, 2], [3, 4]]

这样就获得所有有输入的节点。然后就是怎么样把这两个list合并。可以有一个简单的方法,一个叫做reduce的方法。

reduce(lambda a, b: a+b, list(simple_graph.values()))---
[1, 2, 3, 4]

这样就把它给它连起来了。

那我们还需要找一个,就是只有输出没有输入的节点,这些该怎么去找呢?其实也就是我们的[k1, b1, k2, b2, y]这些值。

来,我们还是拿刚才的simple_graph来举例,但是这次我们改一下里面的内容:

simple_graph = {'a': ['a', 2],'b': ['b', 4]
}a = list(simple_graph.keys())
b = reduce(lambda a, b: a+b, list(simple_graph.values()))print(list(set(b) - set(a)))---
[2, 4]

我们没有用循环,而是将其变成了一个集合,然后利用集合的加减来做。

我们的实际代码就可以这样写:

def topologic(graph):sorted_node = []while graph:all_inputs = reduce(lambda a, b: a+b, list(graph.values()))all_outputs = list(graph.keys())all_inputs = set(all_inputs)all_outputs = set(all_outputs)need_remove = all_outputs - all_inputsreturn sorted_node

那现在我们继续往后,如果找到了这些只有输出没有输入的节点之后,我们做一个判断,然后定义一个节点,用来保存随机选择的节点:

if len(need_remove) > 0:node = random.choice(list(need_remove))

这个时候x, b, k, y都有可能,那么我们随机找一个就行。然后将这个找到的节点从graph给它删除。并且将其插入到sorted_node中去,并且返回出来。

    if ...:node = random.choice(list(need_remove))graph.pop(node)sorted_node.append(node)return sorted_node

然后这里还会出一个小问题,我们还是拿一个示例来说:

simple_graph = {'a': ['sigmoid'],'b': ['loss'],'c': ['loss']
}simple_graph.pop('b')
simple_graph---
{'a': ['sigmoid'], 'c': ['loss']}

看,我们在删除node的时候,其所对应的value也就一起删除了,那这个时候,我们最后的输出列表里会丢失最后一个node。所以,我们在判断为最后一个的时候,需要额外的将其加上, 放在pop方法执行之前。那我们整个代码需要调整一下先后顺序。

def topologic(graph):sorted_node = []while graph:...if len(need_remove) > 0:node = random.choice(list(need_remove))sorted_node.append(node)if len(graph) == 1: sorted_node += graph[node]         graph.pop(node)return sorted_node

现在其实这个代码就已经OK了,我们来再加几句话:

...
if len(need_remove) > 0:...for _, links in graph.items():if node in links: links.remove(node)
else:raise TypeError('This graph has circle, which cannot get topological order.')
...

我们把它的连接关系,例如现在选择了k1,我们要把k1的连接关系从这些里边给它删掉。

遍历一下graph,遍历的时候如果删除的node在它的输出里边,我们就把它删除。

加上else判断,如果图不是空的,但是最终没有找到,也就是这两个集合作减法,但是得到一个空集,没有找到,那我们就来输出一个错误:This graph has circle, which cannot get topological order.

现在我们可以来实验一下了:

x, k, b, linear, sigmoid, y, loss = 'x', 'k', 'b', 'linear', 'sigmoid', 'y', 'loss'
test_graph = {x: [linear],k: [linear],b: [linear],linear: [sigmoid],sigmoid: [loss],y: [loss]
}topologic(test_graph)---
['x', 'b', 'k', 'y', 'linear', 'sigmoid', 'loss']

好, 现在让我们来声明一个class node:

class Node:pass

然后我们先来抽象一下这些节点:

## Our Simple Model Elementsnode_x = Node(inputs=None, outputs=[node_linear])
node_y = Node(inputs=None, outputs=[node_loss])
node_k = Node(inputs=None, outputs=[node_linear])
node_b = Node(inputs=None, outputs=[node_linear])
node_linear = Node(inputs=[node_x, node_k, node_b], outputs=[node_sigmoid])
node_sigmoid = Node(inputs=[node_linear], outputs=[node_loss])
node_loss = Node(inputs=[node_sigmoid, node_y], outputs=None)

现在咱们就把图中每个节点已经给它抽象好了,但是我们发现节点写成这个样子代码是比较冗余。打比方说:node_linear = Node(input=[node_x, node_k, node_b], outputs=[node_sigmoid]), 既然我们已经告诉程序node_linear这个节点的输入是[node_x, node_k, node_b], 那其实也就是告诉程序这些节点的输出是node_linear

好,我们接下来要在class Node里定义一个方法:

def __init__(self, inputs, outputs):self.inputs = inputsself.outputs = outputs

现在我们根据上面对代码冗余的分析,可以加上这样简单的一句:

def __init__(self, inputs=[]):self.inputs = inputsself.outputs = []for node in inputs:node.outputs.append(self)

把这句加上之后, 就可以只在里面输入inputs就行了,不用再输入outputs,代码就变得简单多了:

## Our Simple Model Elements
### version - 02
node_x = Node()
node_y = Node()
node_k = Node()
node_b = Node()
node_linear = Node(inputs=[node_x, node_k, node_b])
node_sigmoid = Node(inputs=[node_linear])
node_loss = Node(inputs=[node_sigmoid, node_y])

我们是把每个节点给它做出来了,那么怎么样能够把这个节点给它像串珠子一样串起来变成一张图呢?

其实我们只要去考察所有的边沿节点就可以了,把所有的x,y,k和b这种外层的函数给个变量:

need_expend = [node_x, node_y, node_k, node_b]

咱们再生成一个变量,这个变量是用来通过外沿这些节点,把连接图给生成出来。

computing_graph = defaultdict(list)while need_expend:n = need_expend.pop(0)if n in computing_graph: continuefor m in n.outputs:computing_graph[n].append(m)need_expend.append(m)

while里面,当外沿节点的list不为空的时候,我们就在里面来取一个点,我们就取第一个吧,取出来并删除。

然后如果这个点我们已经考察过了, 那就continue,如果没有,我们对于所有的这个n里边的outputs,插入到computing_graph的n的位置。再插入到外沿节点的list内。因为我们现在多了一个扩充节点,所以我们需要给插入进去。

比方说我们这次找出来了linear,把linear也加到这个需要扩充的点一行,然后就可以从linear再找到sigmoid了。

来,我们看下现在的这个computing_graph:

computing_graph---
defaultdict(list,{<__main__.Node at 0x12053e080>: [<__main__.Node at 0x12053dc30>],<__main__.Node at 0x12053e9b0>: [<__main__.Node at 0x12053ef50>],<__main__.Node at 0x12053d510>: [<__main__.Node at 0x12053dc30>],<__main__.Node at 0x12053c280>: [<__main__.Node at 0x12053dc30>],<__main__.Node at 0x12053dc30>: [<__main__.Node at 0x1202860e0>],<__main__.Node at 0x1202860e0>: [<__main__.Node at 0x12053ef50>]})

这样就获得出来了,其实是把它变成了刚刚的那个图。这样呢,我们就可以应用topologic来进行拓朴排序了。

topologic(computing_graph)---
[<__main__.Node at 0x12053c280>,<__main__.Node at 0x12053d510>,<__main__.Node at 0x12053e080>,<__main__.Node at 0x12053e9b0>,<__main__.Node at 0x12053dc30>,<__main__.Node at 0x1202860e0>,<__main__.Node at 0x12053ef50>]

但是我们打出来的内容都是一些内存地址,我们还需要改一下这个程序。我们在我们的class Node里多增加一个方法,用于return它的名字:

def __init__(self, inputs=[], name=None):...self.name = namedef __repr__(self):return 'Node:{} '.format(self.name)

这样之后,我们还需要改一下节点,在里面增加一个变量name=''

node_x = Node(name='x')
...
node_loss = Node(inputs=[node_sigmoid, node_y], name='loss')

每一个都需要加上,我用...简化了代码。

然后我们再来看:

topologic(computing_graph)---
[Node:k , Node:x , Node:b , Node:linear , Node:sigmoid , Node:y , Node:loss ]

然后我们来将这段封装起来,变成一个函数:

feed_dict = {node_x: 3, node_y: random.random(),node_k: random.random(),node_b: 0.38
}def convert_feed_dict_to_graph(feed_dict):need_expend = [n for n in feed_dict]...return computing_graph

一般来说,很多大厂在建立代码的时候,x, y, k, b这种东西会被称为placeholder, 我们创建的need_expend会被称为是feed_dict。所以我们做了这样一个修改,将need_expend拿到方法里取重新获取。

这些节点刚开始的时候没有值,那我们给它一个初始值,我这里的值都是随意给的。

这样,就不仅把最外沿的节点给找出来了,而且还把值给他送进去了,相对来说就会更简单一些。所有定义出来的节点,我们都可以把它变成图关系。

topologic(convert_feed_dict_to_graph(feed_dict))---
[Node:k , Node:y , Node:b , Node:x , Node:linear , Node:sigmoid , Node:loss ]

咱们现在再定一个点,我们用一个变量存起来:

sorted_nodes = topologic(convert_feed_dict_to_graph(feed_dict))

那么咱们现在来模拟一下它的计算过程,模拟神经网络的计算过程。

class Node:...def fowward(self):print('I am {}, I calculate myself value!!!'.format(self.name))for node in sorted_nodes:node.forward()---
I am y, I calculate myself value!!!
I am x, I calculate myself value!!!
I am b, I calculate myself value!!!
I am k, I calculate myself value!!!
I am linear, I calculate myself value!!!
I am sigmoid, I calculate myself value!!!
I am loss, I calculate myself value!!!

我们在Node里定义了一个方法forward,从前往后运算,这个时候我们在每个里面加一个向前运算。

这个就是拓朴排序的作用,经过排序之后,那需要在后面计算的节点,就一定会放在后面再进行计算。

好,那我们现在需要区分两个内容,一个是被赋值的内容,一个是需要计算的内容。

刚才我们说过,在大厂的这些地方,x,y,k,b这种东西都被定义为占位符,那我们来修改一下代码:

class Node:def __init__(self, inputs=[], name=None):...def forward(self):print('I am {}, 我需要自己计算自己的值。'.format(self.name))...class Placeholder(Node):def __init__(self, name=None):Node.__init__(self, name = name)def forward(self):print('I am {}, 我已经被人为赋值了。'.format(self.name))def __repr__(self):return 'Node:{} '.format(self.name)### version - 02
node_x = Placeholder(name='x')
node_y = Placeholder(name='y')
node_k = Placeholder(name='k')
node_b = Placeholder(name='b')
node_linear = Node(inputs=[node_x, node_k, node_b], name='linear')
node_sigmoid = Node(inputs=[node_linear], name='sigmoid')
node_loss = Node(inputs=[node_sigmoid, node_y], name='loss')

我们创建了一个Placeholder类,继承了Node, 然后我们取修改初始化方法,它是是没有input的,只有一个name。

然后forward我们改一下,改成打印已经被赋值的语句。父类Node里的forward也改一下,改成需要自己计算自己的值。

那我们这个时候将赋值的四个节点改成调用Placeholder。

接下来,我们需要修改convert_feed_dict_to_graph方法了:

def convert_feed_dict_to_graph(feed_dict):...while need_expend:...if isinstance(n, Placeholder): n.value = feed_dict[n]......

我们来检查这个节点是否是Placeholder,如果是的话,将当前的feed_dict赋值给n.value。来看下结果:

for node in sorted_nodes:node.forward()---
I am b, 我已经被人为赋值了。
I am x, 我已经被人为赋值了。
I am k, 我已经被人为赋值了。
I am y, 我已经被人为赋值了。
I am linear, 我需要自己计算自己的值。
I am sigmoid, 我需要自己计算自己的值。
I am loss, 我需要自己计算自己的值。

好,到现在为止,咱们只是打了一段文字,问题是对于linear, sigmoidloss, 到底是怎么计算的呢?

这个问题,咱们放到下一节课里面去讲,现在咱们这篇文章已经超标了,目测应该超过万字了吧。

好,下节课记得来看咱们具体如何在实现拓朴排序后将计算加进去。

这篇关于21. 深度学习 - 拓朴排序的原理和实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/832245

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Java实现Excel与HTML互转

《Java实现Excel与HTML互转》Excel是一种电子表格格式,而HTM则是一种用于创建网页的标记语言,虽然两者在用途上存在差异,但有时我们需要将数据从一种格式转换为另一种格式,下面我们就来看看... Excel是一种电子表格格式,广泛用于数据处理和分析,而HTM则是一种用于创建网页的标记语言。虽然两

Java中Springboot集成Kafka实现消息发送和接收功能

《Java中Springboot集成Kafka实现消息发送和接收功能》Kafka是一个高吞吐量的分布式发布-订阅消息系统,主要用于处理大规模数据流,它由生产者、消费者、主题、分区和代理等组件构成,Ka... 目录一、Kafka 简介二、Kafka 功能三、POM依赖四、配置文件五、生产者六、消费者一、Kaf

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一