第1章 Iceberg简介

2024-03-21 01:36
文章标签 简介 iceberg

本文主要是介绍第1章 Iceberg简介,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.1 概述

Iceberg是一个面向大型分析数据集的开放表格格式。它为多种计算引擎,如Spark、Trino、PrestoDB、Flink、Hive和Impala,增加了表格功能,使用一种高性能的表格格式,其工作方式就像一个SQL表一样。

在生产环境中,Iceberg被用于管理单个表格,这些表格可包含数十PB(千兆字节)的数据,即使是这样巨大的表格也能在没有分布式SQL引擎的情况下读取。它扫描规划速度快,读取表格或查找文件不需要分布式SQL引擎。同时,Iceberg使用表元数据,通过分区和列级统计信息来剪枝数据文件,实现高级过滤。

Iceberg旨在解决最终一致性云对象存储中的正确性问题,并适用于任何云存储。在HDFS中,它通过避免listing和重命名操作来减少NN(名称节点)拥塞。此外,Iceberg保证了可序列化隔离,表格变更是原子性的,读取者永远不会看到部分或未提交的变更。多个并发写入者使用乐观并发控制,并会重试以确保当写入操作冲突时兼容的更新能够成功。

总的来说,Iceberg为大型分析数据集提供了高效、可靠和灵活的数据管理解决方案,满足了各种复杂的分析需求。如需更多关于Iceberg的详细信息,建议查阅官方文档或相关教程。

1.2 特性

1.2.1 数据存储、计算引擎插件化

Iceberg提供一个开放通用的表格式(Table Format)实现方案,不和特定的数据存储、计算引擎绑定。目前大数据领域的常见数据存储(HDFS、S3...),计算引擎(Flink、Spark...)都可以接入Iceberg。

在生产环境中,可选择不同的组件搭使用。甚至可以不通过计算引擎,直接读取存在文件系统上的数据。

1.2.2 实时流批一体

Iceberg上游组件将数据写入完成后,下游组件及时可读,可查询。可以满足实时场景.并且Iceberg同时提供了流/批读接口、流/批写接口。可以在同一个流程里, 同时处理流数据和批数据,大大简化了ETL链路。

1.2.3 数据表演化(Table Evolution)

Iceberg可以通过SQL的方式进行表级别模式演进。进行这些操作的时候,代价极低。 不存在读出数据重新写入或者迁移数据这种费时费力的操作。

比如在常用的Hive中,如果我们需要把一个按天分区的表,改成按小时分区。此时,不能再原表之上直接修改,只能新建一个按小时分区的表,然后再把数据Insert到新的小时分区表。而且,即使我们通过Rename的命令把新表的名字改为原表,使用原表的上次层应用, 也可能由于分区字段修改,导致需要修改 SQL,这样花费的经历是非常繁琐的。

1.2.4 模式演化(Schema Evolution)

Iceberg支持下面几种模式演化:

  • ADD:向表或者嵌套结构增加新列
  • Drop:从表中或者嵌套结构中移除一列
  • Rename:重命名表中或者嵌套结构中的一列
  • Update:将复杂结构(struct, map<key, value>, list)中的基本类型扩展类型长度, 比如tinyint修改成int.
  • Reorder:改变列或者嵌套结构中字段的排列顺序

Iceberg保证模式演化(Schema Evolution)是没有副作用的独立操作流程, 一个元数据操作, 不会涉及到重写数据文件的过程。具体的如下:

  • 增加列时候,不会从另外一个列中读取已存在的的数据
  • 删除列或者嵌套结构中字段的时候,不会改变任何其他列的值
  • 更新列或者嵌套结构中字段的时候,不会改变任何其他列的值
  • 改变列列或者嵌套结构中字段顺序的时候,不会改变相关联的值

在表中Iceberg 使用唯一ID来定位每一列的信息。新增一个列的时候,会新分配给它一个唯一ID, 并且绝对不会使用已经被使用的ID。

使用名称或者位置信息来定位列的, 都会存在一些问题, 比如使用名称的话,名称可能会重复, 使用位置的话, 不能修改顺序并且废弃的字段也不能删除。

总结为

  1. 数据写入与读取:Iceberg支持实时和批量数据的写入和读取,这使得它能够高效地处理大规模数据集。
  2. 计算引擎支持:Iceberg为多种计算引擎,包括Spark和Flink,提供了表格功能,使得这些引擎能够更方便地处理和分析数据。
  3. 事务ACID支持:Iceberg支持ACID事务,这确保了数据的一致性和可靠性。在事务中,多个操作(如插入、更新和删除)都是原子性的,要么全部成功,要么全部失败。
  4. 底层存储与文件格式:Iceberg不绑定任何特定的底层存储,它支持Parquet、ORC和Avro等格式,这些格式都是列式存储的,提供了高效的压缩和查询性能。
  5. 分区与元数据:Iceberg支持隐藏分区和分区变更,这使得业务可以根据需要进行数据分区策略。同时,它使用元数据来描述表的结构和分区信息,这些元数据包括表的schema、分区列、文件列表等,并存储在独立的存储系统中。
  6. 数据查询与版本控制:Iceberg支持快照数据的重复查询,并具备版本回滚功能,这为用户提供了数据查询的灵活性和数据管理的安全性。

1.2.5 分区演化(Partition Evolution)

Iceberg可以在一个已存在的表上直接修改,因为Iceberg的查询流程并不和分区信息直接关联。

当我们改变一个表的分区策略时,对应修改分区之前的数据不会改变, 依然会采用老的分区策略,新的数据会采用新的分区策略,也就是说同一个表会有两种分区策略,旧数据采用旧分区策略,新数据采用新新分区策略, 在元数据里两个分区策略相互独立,不重合。

在查询数据的时候,如果存在跨分区策略的情况,则会解析成两个不同执行计划,如Iceberg官网提供图所示:

图中booking_table表2008年按月分区,进入2009年后改为按天分区,这两中分区策略共存于该表中。

借助Iceberg的隐藏分区(Hidden Partition),在写SQL 查询的时候,不需要在SQL中特别指定分区过滤条件,Iceberg会自动分区,过滤掉不需要的数据。

Iceberg分区演化操作同样是一个元数据操作, 不会重写数据文件。

1.2.6 列顺序演化(Sort Order Evolution)

Iceberg可以在一个已经存在的表上修改排序策略。修改了排序策略之后, 旧数据依旧采用老排序策略不变。往Iceberg里写数据的计算引擎总是会选择最新的排序策略, 但是当排序的代价极其高昂的时候, 就不进行排序了。

1.2.7 隐藏分区(Hidden Partition)

Iceberg的分区信息并不需要人工维护, 它可以被隐藏起来. 不同其他类似Hive 的分区策略, Iceberg的分区字段/策略(通过某一个字段计算出来),可以不是表的字段和表数据存储目录也没有关系。在建表或者修改分区策略之后,新的数据会自动计算所属于的分区。在查询的时候同样不用关系表的分区是什么字段/策略,只需要关注业务逻辑,Iceberg会自动过滤不需要的分区数据。

正是由于Iceberg的分区信息和表数据存储目录是独立的,使得Iceberg的表分区可以被修改,而且不和涉及到数据迁移。

1.2.8 镜像数据查询(Time Travel)

Iceberg提供了查询表历史某一时间点数据镜像(snapshot)的能力。通过该特性可以将最新的SQL逻辑,应用到历史数据上。

1.2.9 支持事务(ACID)

Iceberg通过提供事务(ACID)的机制,使其具备了upsert的能力并且使得边写边读成为可能,从而数据可以更快的被下游组件消费。通过事务保证了下游组件只能消费已commit的数据,而不会读到部分甚至未提交的数据。

1.2.10 基于乐观锁的并发支持

Iceberg基于乐观锁提供了多个程序并发写入的能力并且保证数据线性一致。

1.2.11 文件级数据剪裁

Iceberg的元数据里面提供了每个数据文件的一些统计信息,比如最大值,最小值,Count计数等等。因此,查询SQL的过滤条件除了常规的分区,列过滤,甚至可以下推到文件级别,大大加快了查询效率。

这篇关于第1章 Iceberg简介的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/831393

相关文章

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

Java中的Opencv简介与开发环境部署方法

《Java中的Opencv简介与开发环境部署方法》OpenCV是一个开源的计算机视觉和图像处理库,提供了丰富的图像处理算法和工具,它支持多种图像处理和计算机视觉算法,可以用于物体识别与跟踪、图像分割与... 目录1.Opencv简介Opencv的应用2.Java使用OpenCV进行图像操作opencv安装j

ASIO网络调试助手之一:简介

多年前,写过几篇《Boost.Asio C++网络编程》的学习文章,一直没机会实践。最近项目中用到了Asio,于是抽空写了个网络调试助手。 开发环境: Win10 Qt5.12.6 + Asio(standalone) + spdlog 支持协议: UDP + TCP Client + TCP Server 独立的Asio(http://www.think-async.com)只包含了头文件,不依

业务协同平台--简介

一、使用场景         1.多个系统统一在业务协同平台定义协同策略,由业务协同平台代替人工完成一系列的单据录入         2.同时业务协同平台将执行任务推送给pda、pad等执行终端,通知各人员、设备进行作业执行         3.作业过程中,可设置完成时间预警、作业节点通知,时刻了解作业进程         4.做完再给你做过程分析,给出优化建议         就问你这一套下

容器编排平台Kubernetes简介

目录 什么是K8s 为什么需要K8s 什么是容器(Contianer) K8s能做什么? K8s的架构原理  控制平面(Control plane)         kube-apiserver         etcd         kube-scheduler         kube-controller-manager         cloud-controlle

【Tools】AutoML简介

摇来摇去摇碎点点的金黄 伸手牵来一片梦的霞光 南方的小巷推开多情的门窗 年轻和我们歌唱 摇来摇去摇着温柔的阳光 轻轻托起一件梦的衣裳 古老的都市每天都改变模样                      🎵 方芳《摇太阳》 AutoML(自动机器学习)是一种使用机器学习技术来自动化机器学习任务的方法。在大模型中的AutoML是指在大型数据集上使用自动化机器学习技术进行模型训练和优化。

SaaS、PaaS、IaaS简介

云计算、云服务、云平台……现在“云”已成了一个家喻户晓的概念,但PaaS, IaaS 和SaaS的区别估计还没有那么多的人分得清,下面就分别向大家普及一下它们的基本概念: SaaS 软件即服务 SaaS是Software-as-a-Service的简称,意思是软件即服务。随着互联网技术的发展和应用软件的成熟, 在21世纪开始兴起的一种完全创新的软件应用模式。 它是一种通过Internet提供

LIBSVM简介

LIBSVM简介 支持向量机所涉及到的数学知识对一般的化学研究者来说是比较难的,自己编程实现该算法难度就更大了。但是现在的网络资源非常发达,而且国际上的科学研究者把他们的研究成果已经放在网络上,免费提供给用于研究目的,这样方便大多数的研究者,不必要花费大量的时间理解SVM算法的深奥数学原理和计算机程序设计。目前有关SVM计算的相关软件有很多,如LIBSVM、mySVM、SVMLight等,这些

urllib与requests爬虫简介

urllib与requests爬虫简介 – 潘登同学的爬虫笔记 文章目录 urllib与requests爬虫简介 -- 潘登同学的爬虫笔记第一个爬虫程序 urllib的基本使用Request对象的使用urllib发送get请求实战-喜马拉雅网站 urllib发送post请求 动态页面获取数据请求 SSL证书验证伪装自己的爬虫-请求头 urllib的底层原理伪装自己的爬虫-设置代理爬虫coo

新一代车载(E/E)架构下的中央计算载体---HPC软件架构简介

老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 屏蔽力是信息过载时代一个人的特殊竞争力,任何消耗你的人和事,多看一眼都是你的不对。非必要不费力证明自己,无利益不试图说服别人,是精神上的节能减排。 无人问津也好,技不如人也罢,你都要试着安静下来,去做自己该做的事.而不是让内心的烦躁、焦虑、毁掉你本就不多的热情和定力。 时间不知不觉中,快要来到夏末秋初。一年又过去了一大半,成