代码随想录刷题day29|非递减子序列全排列全排列II

2024-03-21 00:44

本文主要是介绍代码随想录刷题day29|非递减子序列全排列全排列II,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • day29学习内容
  • 一、非递减子序列
    • 1.1、代码-错误写法
      • 1.1.1 多了一个return语句。
      • 1.1.2、nums[i-1] > nums[i],这个条件写错了,为什么呢?
        • 1. 忽略了回溯算法的动态决策过程
        • 2. 限制了可能的递增子序列的探索
    • 1.2、代码-正确写法
  • 二、全排列
    • 2.1、科普
    • 2.2、错误写法
    • 2.3、正确写法1
  • 三、全排列II
    • 3.1、思路
    • 3.2、代码-正确写法
  • 总结
    • 1.感想
    • 2.思维导图


day29学习内容

day29主要内容

  • 非递减子序列
  • 全排列
  • 全排列II

声明
本文思路和文字,引用自《代码随想录》

一、非递减子序列

491.原题链接

1.1、代码-错误写法

class Solution {List<List<Integer>> result = new ArrayList();List<Integer> path = new ArrayList();public List<List<Integer>> findSubsequences(int[] nums) {backTracking(nums, 0);return result;}private void backTracking(int[] nums, int startIndex) {// 终止条件if (path.size() >= 2) {result.add(new ArrayList(path));return;}// 用一个set判断是否已经使用过HashSet<Integer> set = new HashSet<>();// 遍历for (int i = startIndex; i < nums.length; i++) {// 如果递归时下一层节点的值比子序列最后一个元素值大,不满足递增,所以要返回// 或者之前已经使用过该元素if (!path.isEmpty() && nums[i-1] > nums[i] || set.contains(nums[i])) {continue;}// 单层递归逻辑path.add(nums[i]);set.add(nums[i]);// 递归backTracking(nums, i + 1);// 回溯path.remove(path.size() - 1);}}
}

这种写法有2个地方都是错误的。

1.1.1 多了一个return语句。

if (path.size() >= 2) {result.add(new ArrayList(path));return;}

目的是找到所有可能的递增子序列:目标是列出所有可能的递增子序列,而不仅仅是找到第一个满足条件的子序列后就停止。因此,在找到一个有效子序列并将其添加到结果集后,不应该立即返回,而应该继续探索其他可能的子序列。直接返回会导致漏掉其他有效的子序列组合。

回溯算法的工作机制:在执行回溯算法时,每一次递归调用代表探索决策树的一个分支。当达到一个终结点(即满足特定条件的点)时,我们会记录下当前的路径作为结果之一,然后通过回溯(撤销最后的选择)返回到前一个状态,继续探索其他可能的分支。如果在添加结果后立即返回,那么就会错过从当前点出发的其他潜在路径。

1.1.2、nums[i-1] > nums[i],这个条件写错了,为什么呢?

注意看老师画的图,是递归的时候比较的。即下一层节点的值比子序列最后一个元素值大,如果比之前的大,就不满足递增了。
确实,针对解释原因2和3,使用数组[3, 4, 1, 5]作为例子可能会更加合适和清晰。这里我们使用这个数组来重新说明原因2和3,以展示为何不应使用nums[i-1] > nums[i]作为判断条件。

1. 忽略了回溯算法的动态决策过程
  • 例子:考虑数组[3, 4, 1, 5]
    • 在进行到4之后,下一个元素是1。如果使用nums[i-1] > nums[i]4 > 1作为理由停止当前探索,那么我们将错过以1作为起始点、且包含5的递增子序列[1, 5]
    • 这个例子展示了即使当前元素相对于前一个元素是递减的,它仍然可能是未来某个有效递增子序列的起点。
2. 限制了可能的递增子序列的探索
  • 例子:同样考虑数组[3, 4, 1, 5]
    • 如果我们在遍历到4后面的1时,仅因为4 > 1就停止探索,那么我们不仅错过了以1开始的递增子序列,还错过了整个数组中存在的一个非常明显的递增子序列[3, 4, 5]
    • 正确的逻辑应该是,即使1相对于4是递减的,我们仍然继续探索,因为1后面的5可以与数组中的其他元素(如34)形成有效的递增子序列。

1.2、代码-正确写法

class Solution {List<List<Integer>> result = new ArrayList();List<Integer> path = new ArrayList();public List<List<Integer>> findSubsequences(int[] nums) {backTracking(nums, 0);return result;}private void backTracking(int[] nums, int startIndex) {// 终止条件if (path.size() >= 2) {result.add(new ArrayList(path));}// 用一个set判断是否已经使用过HashSet<Integer> set = new HashSet<>();// 遍历for (int i = startIndex; i < nums.length; i++) {// 如果递归时下一层节点的值比子序列最后一个元素值大,不满足递增,所以要返回// 或者之前已经使用过该元素if (!path.isEmpty() && path.get(path.size() - 1) > nums[i] || set.contains(nums[i])) {continue;}// 单层递归逻辑path.add(nums[i]);set.add(nums[i]);// 递归backTracking(nums, i + 1);// 回溯path.remove(path.size() - 1);}}
}

二、全排列

46.原题链接

2.1、科普

[1,2]和[2,1]是同一个排列

2.2、错误写法

class Solution {List<List<Integer>> result = new ArrayList();List<Integer> path = new ArrayList();public List<List<Integer>> permute(int[] nums) {backTraking(nums);return result;}private void backTraking(int nums[]) {if (path.size() > nums.length) {return;}if (path.size() == nums.length) {result.add(new ArrayList(path));}for (int i = 0; i < nums.length; i++) {path.add(nums[i]);// 递归backTraking(nums);path.remove(path.size() - 1);}}
}
  • 为什么是错的
  • 在这里插入图片描述
    看图很明显了,有重复数据,没有进行去重。

2.3、正确写法1

class Solution {List<List<Integer>> result = new ArrayList();List<Integer> path = new ArrayList();//用数组标识是否使用过boolean[] used;public List<List<Integer>> permute(int[] nums) {// 初始化数组used = new boolean[nums.length];backTraking(nums);return result;}private void backTraking(int nums[]) {if (path.size() > nums.length) {return;}if (path.size() == nums.length) {result.add(new ArrayList(path));}for (int i = 0; i < nums.length; i++) {if (used[i]) {continue;}path.add(nums[i]);used[i] = true;// 递归backTraking(nums);used[i] = false;path.remove(path.size() - 1);}}
}

三、全排列II

47.原题链接

3.1、思路

  • 看麻了,代码抄的题解
  • 简单的说,就是在46题的基础上,加了一个去重的逻辑
  • 回溯逻辑(backTraking方法)
  • 终止条件:如果path的大小与nums数组的长度相同,意味着已经找到了一个完整的排列,将其添加到result中,并返回。
  • 循环和选择:遍历每个元素,尝试将其添加到当前路径(path)中。
  • 去重判断:if (i > 0 && nums[i] == nums[i - 1] && !used[i - 1]) { continue; }
    • 这个条件是去重的核心逻辑。当前元素与前一个元素相同,且前一个元素还未被使用(意味着是在回溯的过程中,而不是在向下构建路径的过程中),则跳过当前元素。
      • 这是因为在这种情况下,选择当前元素会产生与之前处理过的元素相同的排列,从而导致重复。
    • 未使用的元素:如果当前元素未被使用,则将其添加到路径中,并标记为已使用,然后递归地继续构建排列,之后撤销这一选择以尝试其他选项。
  • 回溯的撤销操作
    • 在递归调用返回后,执行撤销操作:从路径中移除最近添加的元素,并将used[i]重新标记为false。这一步是回溯算法的典型做法,它确保了在探索完一个元素所有可能性之后,能够正确地恢复状态,并探索下一个元素的所有可能性。

3.2、代码-正确写法

class Solution {List<List<Integer>> result = new ArrayList();List<Integer> path = new ArrayList();// 用数组标识是否使用过boolean[] used;public List<List<Integer>> permuteUnique(int[] nums) {// 初始化数组used = new boolean[nums.length];Arrays.sort(nums);backTraking(nums);return result;}private void backTraking(int nums[]) {if (path.size() == nums.length) {result.add(new ArrayList(path));return;}for (int i = 0; i < nums.length; i++) {if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {continue;}if (used[i] == false) {path.add(nums[i]);used[i] = true;// 递归backTraking(nums);used[i] = false;path.remove(path.size() - 1);}}}
}

看麻了这一题。。

总结

1.感想

  • 马上就是连续刷题一个月了,加油。

2.思维导图

本文思路引用自代码随想录,感谢代码随想录作者。

这篇关于代码随想录刷题day29|非递减子序列全排列全排列II的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/831250

相关文章

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

关于最长递增子序列问题概述

《关于最长递增子序列问题概述》本文详细介绍了最长递增子序列问题的定义及两种优化解法:贪心+二分查找和动态规划+状态压缩,贪心+二分查找时间复杂度为O(nlogn),通过维护一个有序的“尾巴”数组来高效... 一、最长递增子序列问题概述1. 问题定义给定一个整数序列,例如 nums = [10, 9, 2

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

CSS3中使用flex和grid实现等高元素布局的示例代码

《CSS3中使用flex和grid实现等高元素布局的示例代码》:本文主要介绍了使用CSS3中的Flexbox和Grid布局实现等高元素布局的方法,通过简单的两列实现、每行放置3列以及全部代码的展示,展示了这两种布局方式的实现细节和效果,详细内容请阅读本文,希望能对你有所帮助... 过往的实现方法是使用浮动加

JAVA调用Deepseek的api完成基本对话简单代码示例

《JAVA调用Deepseek的api完成基本对话简单代码示例》:本文主要介绍JAVA调用Deepseek的api完成基本对话的相关资料,文中详细讲解了如何获取DeepSeekAPI密钥、添加H... 获取API密钥首先,从DeepSeek平台获取API密钥,用于身份验证。添加HTTP客户端依赖使用Jav

Java实现状态模式的示例代码

《Java实现状态模式的示例代码》状态模式是一种行为型设计模式,允许对象根据其内部状态改变行为,本文主要介绍了Java实现状态模式的示例代码,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来... 目录一、简介1、定义2、状态模式的结构二、Java实现案例1、电灯开关状态案例2、番茄工作法状态案例

nginx-rtmp-module模块实现视频点播的示例代码

《nginx-rtmp-module模块实现视频点播的示例代码》本文主要介绍了nginx-rtmp-module模块实现视频点播,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录预置条件Nginx点播基本配置点播远程文件指定多个播放位置参考预置条件配置点播服务器 192.