代码随想录刷题day29|非递减子序列全排列全排列II

2024-03-21 00:44

本文主要是介绍代码随想录刷题day29|非递减子序列全排列全排列II,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • day29学习内容
  • 一、非递减子序列
    • 1.1、代码-错误写法
      • 1.1.1 多了一个return语句。
      • 1.1.2、nums[i-1] > nums[i],这个条件写错了,为什么呢?
        • 1. 忽略了回溯算法的动态决策过程
        • 2. 限制了可能的递增子序列的探索
    • 1.2、代码-正确写法
  • 二、全排列
    • 2.1、科普
    • 2.2、错误写法
    • 2.3、正确写法1
  • 三、全排列II
    • 3.1、思路
    • 3.2、代码-正确写法
  • 总结
    • 1.感想
    • 2.思维导图


day29学习内容

day29主要内容

  • 非递减子序列
  • 全排列
  • 全排列II

声明
本文思路和文字,引用自《代码随想录》

一、非递减子序列

491.原题链接

1.1、代码-错误写法

class Solution {List<List<Integer>> result = new ArrayList();List<Integer> path = new ArrayList();public List<List<Integer>> findSubsequences(int[] nums) {backTracking(nums, 0);return result;}private void backTracking(int[] nums, int startIndex) {// 终止条件if (path.size() >= 2) {result.add(new ArrayList(path));return;}// 用一个set判断是否已经使用过HashSet<Integer> set = new HashSet<>();// 遍历for (int i = startIndex; i < nums.length; i++) {// 如果递归时下一层节点的值比子序列最后一个元素值大,不满足递增,所以要返回// 或者之前已经使用过该元素if (!path.isEmpty() && nums[i-1] > nums[i] || set.contains(nums[i])) {continue;}// 单层递归逻辑path.add(nums[i]);set.add(nums[i]);// 递归backTracking(nums, i + 1);// 回溯path.remove(path.size() - 1);}}
}

这种写法有2个地方都是错误的。

1.1.1 多了一个return语句。

if (path.size() >= 2) {result.add(new ArrayList(path));return;}

目的是找到所有可能的递增子序列:目标是列出所有可能的递增子序列,而不仅仅是找到第一个满足条件的子序列后就停止。因此,在找到一个有效子序列并将其添加到结果集后,不应该立即返回,而应该继续探索其他可能的子序列。直接返回会导致漏掉其他有效的子序列组合。

回溯算法的工作机制:在执行回溯算法时,每一次递归调用代表探索决策树的一个分支。当达到一个终结点(即满足特定条件的点)时,我们会记录下当前的路径作为结果之一,然后通过回溯(撤销最后的选择)返回到前一个状态,继续探索其他可能的分支。如果在添加结果后立即返回,那么就会错过从当前点出发的其他潜在路径。

1.1.2、nums[i-1] > nums[i],这个条件写错了,为什么呢?

注意看老师画的图,是递归的时候比较的。即下一层节点的值比子序列最后一个元素值大,如果比之前的大,就不满足递增了。
确实,针对解释原因2和3,使用数组[3, 4, 1, 5]作为例子可能会更加合适和清晰。这里我们使用这个数组来重新说明原因2和3,以展示为何不应使用nums[i-1] > nums[i]作为判断条件。

1. 忽略了回溯算法的动态决策过程
  • 例子:考虑数组[3, 4, 1, 5]
    • 在进行到4之后,下一个元素是1。如果使用nums[i-1] > nums[i]4 > 1作为理由停止当前探索,那么我们将错过以1作为起始点、且包含5的递增子序列[1, 5]
    • 这个例子展示了即使当前元素相对于前一个元素是递减的,它仍然可能是未来某个有效递增子序列的起点。
2. 限制了可能的递增子序列的探索
  • 例子:同样考虑数组[3, 4, 1, 5]
    • 如果我们在遍历到4后面的1时,仅因为4 > 1就停止探索,那么我们不仅错过了以1开始的递增子序列,还错过了整个数组中存在的一个非常明显的递增子序列[3, 4, 5]
    • 正确的逻辑应该是,即使1相对于4是递减的,我们仍然继续探索,因为1后面的5可以与数组中的其他元素(如34)形成有效的递增子序列。

1.2、代码-正确写法

class Solution {List<List<Integer>> result = new ArrayList();List<Integer> path = new ArrayList();public List<List<Integer>> findSubsequences(int[] nums) {backTracking(nums, 0);return result;}private void backTracking(int[] nums, int startIndex) {// 终止条件if (path.size() >= 2) {result.add(new ArrayList(path));}// 用一个set判断是否已经使用过HashSet<Integer> set = new HashSet<>();// 遍历for (int i = startIndex; i < nums.length; i++) {// 如果递归时下一层节点的值比子序列最后一个元素值大,不满足递增,所以要返回// 或者之前已经使用过该元素if (!path.isEmpty() && path.get(path.size() - 1) > nums[i] || set.contains(nums[i])) {continue;}// 单层递归逻辑path.add(nums[i]);set.add(nums[i]);// 递归backTracking(nums, i + 1);// 回溯path.remove(path.size() - 1);}}
}

二、全排列

46.原题链接

2.1、科普

[1,2]和[2,1]是同一个排列

2.2、错误写法

class Solution {List<List<Integer>> result = new ArrayList();List<Integer> path = new ArrayList();public List<List<Integer>> permute(int[] nums) {backTraking(nums);return result;}private void backTraking(int nums[]) {if (path.size() > nums.length) {return;}if (path.size() == nums.length) {result.add(new ArrayList(path));}for (int i = 0; i < nums.length; i++) {path.add(nums[i]);// 递归backTraking(nums);path.remove(path.size() - 1);}}
}
  • 为什么是错的
  • 在这里插入图片描述
    看图很明显了,有重复数据,没有进行去重。

2.3、正确写法1

class Solution {List<List<Integer>> result = new ArrayList();List<Integer> path = new ArrayList();//用数组标识是否使用过boolean[] used;public List<List<Integer>> permute(int[] nums) {// 初始化数组used = new boolean[nums.length];backTraking(nums);return result;}private void backTraking(int nums[]) {if (path.size() > nums.length) {return;}if (path.size() == nums.length) {result.add(new ArrayList(path));}for (int i = 0; i < nums.length; i++) {if (used[i]) {continue;}path.add(nums[i]);used[i] = true;// 递归backTraking(nums);used[i] = false;path.remove(path.size() - 1);}}
}

三、全排列II

47.原题链接

3.1、思路

  • 看麻了,代码抄的题解
  • 简单的说,就是在46题的基础上,加了一个去重的逻辑
  • 回溯逻辑(backTraking方法)
  • 终止条件:如果path的大小与nums数组的长度相同,意味着已经找到了一个完整的排列,将其添加到result中,并返回。
  • 循环和选择:遍历每个元素,尝试将其添加到当前路径(path)中。
  • 去重判断:if (i > 0 && nums[i] == nums[i - 1] && !used[i - 1]) { continue; }
    • 这个条件是去重的核心逻辑。当前元素与前一个元素相同,且前一个元素还未被使用(意味着是在回溯的过程中,而不是在向下构建路径的过程中),则跳过当前元素。
      • 这是因为在这种情况下,选择当前元素会产生与之前处理过的元素相同的排列,从而导致重复。
    • 未使用的元素:如果当前元素未被使用,则将其添加到路径中,并标记为已使用,然后递归地继续构建排列,之后撤销这一选择以尝试其他选项。
  • 回溯的撤销操作
    • 在递归调用返回后,执行撤销操作:从路径中移除最近添加的元素,并将used[i]重新标记为false。这一步是回溯算法的典型做法,它确保了在探索完一个元素所有可能性之后,能够正确地恢复状态,并探索下一个元素的所有可能性。

3.2、代码-正确写法

class Solution {List<List<Integer>> result = new ArrayList();List<Integer> path = new ArrayList();// 用数组标识是否使用过boolean[] used;public List<List<Integer>> permuteUnique(int[] nums) {// 初始化数组used = new boolean[nums.length];Arrays.sort(nums);backTraking(nums);return result;}private void backTraking(int nums[]) {if (path.size() == nums.length) {result.add(new ArrayList(path));return;}for (int i = 0; i < nums.length; i++) {if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {continue;}if (used[i] == false) {path.add(nums[i]);used[i] = true;// 递归backTraking(nums);used[i] = false;path.remove(path.size() - 1);}}}
}

看麻了这一题。。

总结

1.感想

  • 马上就是连续刷题一个月了,加油。

2.思维导图

本文思路引用自代码随想录,感谢代码随想录作者。

这篇关于代码随想录刷题day29|非递减子序列全排列全排列II的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/831250

相关文章

SpringCloud集成AlloyDB的示例代码

《SpringCloud集成AlloyDB的示例代码》AlloyDB是GoogleCloud提供的一种高度可扩展、强性能的关系型数据库服务,它兼容PostgreSQL,并提供了更快的查询性能... 目录1.AlloyDBjavascript是什么?AlloyDB 的工作原理2.搭建测试环境3.代码工程1.

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

Java中ArrayList的8种浅拷贝方式示例代码

《Java中ArrayList的8种浅拷贝方式示例代码》:本文主要介绍Java中ArrayList的8种浅拷贝方式的相关资料,讲解了Java中ArrayList的浅拷贝概念,并详细分享了八种实现浅... 目录引言什么是浅拷贝?ArrayList 浅拷贝的重要性方法一:使用构造函数方法二:使用 addAll(

JAVA利用顺序表实现“杨辉三角”的思路及代码示例

《JAVA利用顺序表实现“杨辉三角”的思路及代码示例》杨辉三角形是中国古代数学的杰出研究成果之一,是我国北宋数学家贾宪于1050年首先发现并使用的,:本文主要介绍JAVA利用顺序表实现杨辉三角的思... 目录一:“杨辉三角”题目链接二:题解代码:三:题解思路:总结一:“杨辉三角”题目链接题目链接:点击这里

SpringBoot使用注解集成Redis缓存的示例代码

《SpringBoot使用注解集成Redis缓存的示例代码》:本文主要介绍在SpringBoot中使用注解集成Redis缓存的步骤,包括添加依赖、创建相关配置类、需要缓存数据的类(Tes... 目录一、创建 Caching 配置类二、创建需要缓存数据的类三、测试方法Spring Boot 熟悉后,集成一个外

轻松掌握python的dataclass让你的代码更简洁优雅

《轻松掌握python的dataclass让你的代码更简洁优雅》本文总结了几个我在使用Python的dataclass时常用的技巧,dataclass装饰器可以帮助我们简化数据类的定义过程,包括设置默... 目录1. 传统的类定义方式2. dataclass装饰器定义类2.1. 默认值2.2. 隐藏敏感信息

opencv实现像素统计的示例代码

《opencv实现像素统计的示例代码》本文介绍了OpenCV中统计图像像素信息的常用方法和函数,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 统计像素值的基本信息2. 统计像素值的直方图3. 统计像素值的总和4. 统计非零像素的数量

IDEA常用插件之代码扫描SonarLint详解

《IDEA常用插件之代码扫描SonarLint详解》SonarLint是一款用于代码扫描的插件,可以帮助查找隐藏的bug,下载并安装插件后,右键点击项目并选择“Analyze”、“Analyzewit... 目录SonajavascriptrLint 查找隐藏的bug下载安装插件扫描代码查看结果总结Sona

Python开发围棋游戏的实例代码(实现全部功能)

《Python开发围棋游戏的实例代码(实现全部功能)》围棋是一种古老而复杂的策略棋类游戏,起源于中国,已有超过2500年的历史,本文介绍了如何用Python开发一个简单的围棋游戏,实例代码涵盖了游戏的... 目录1. 围棋游戏概述1.1 游戏规则1.2 游戏设计思路2. 环境准备3. 创建棋盘3.1 棋盘类

Java实现批量化操作Excel文件的示例代码

《Java实现批量化操作Excel文件的示例代码》在操作Excel的场景中,通常会有一些针对Excel的批量操作,这篇文章主要为大家详细介绍了如何使用GcExcel实现批量化操作Excel,感兴趣的可... 目录前言 | 问题背景什么是GcExcel场景1 批量导入Excel文件,并读取特定区域的数据场景2