代码随想录刷题day29|非递减子序列全排列全排列II

2024-03-21 00:44

本文主要是介绍代码随想录刷题day29|非递减子序列全排列全排列II,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • day29学习内容
  • 一、非递减子序列
    • 1.1、代码-错误写法
      • 1.1.1 多了一个return语句。
      • 1.1.2、nums[i-1] > nums[i],这个条件写错了,为什么呢?
        • 1. 忽略了回溯算法的动态决策过程
        • 2. 限制了可能的递增子序列的探索
    • 1.2、代码-正确写法
  • 二、全排列
    • 2.1、科普
    • 2.2、错误写法
    • 2.3、正确写法1
  • 三、全排列II
    • 3.1、思路
    • 3.2、代码-正确写法
  • 总结
    • 1.感想
    • 2.思维导图


day29学习内容

day29主要内容

  • 非递减子序列
  • 全排列
  • 全排列II

声明
本文思路和文字,引用自《代码随想录》

一、非递减子序列

491.原题链接

1.1、代码-错误写法

class Solution {List<List<Integer>> result = new ArrayList();List<Integer> path = new ArrayList();public List<List<Integer>> findSubsequences(int[] nums) {backTracking(nums, 0);return result;}private void backTracking(int[] nums, int startIndex) {// 终止条件if (path.size() >= 2) {result.add(new ArrayList(path));return;}// 用一个set判断是否已经使用过HashSet<Integer> set = new HashSet<>();// 遍历for (int i = startIndex; i < nums.length; i++) {// 如果递归时下一层节点的值比子序列最后一个元素值大,不满足递增,所以要返回// 或者之前已经使用过该元素if (!path.isEmpty() && nums[i-1] > nums[i] || set.contains(nums[i])) {continue;}// 单层递归逻辑path.add(nums[i]);set.add(nums[i]);// 递归backTracking(nums, i + 1);// 回溯path.remove(path.size() - 1);}}
}

这种写法有2个地方都是错误的。

1.1.1 多了一个return语句。

if (path.size() >= 2) {result.add(new ArrayList(path));return;}

目的是找到所有可能的递增子序列:目标是列出所有可能的递增子序列,而不仅仅是找到第一个满足条件的子序列后就停止。因此,在找到一个有效子序列并将其添加到结果集后,不应该立即返回,而应该继续探索其他可能的子序列。直接返回会导致漏掉其他有效的子序列组合。

回溯算法的工作机制:在执行回溯算法时,每一次递归调用代表探索决策树的一个分支。当达到一个终结点(即满足特定条件的点)时,我们会记录下当前的路径作为结果之一,然后通过回溯(撤销最后的选择)返回到前一个状态,继续探索其他可能的分支。如果在添加结果后立即返回,那么就会错过从当前点出发的其他潜在路径。

1.1.2、nums[i-1] > nums[i],这个条件写错了,为什么呢?

注意看老师画的图,是递归的时候比较的。即下一层节点的值比子序列最后一个元素值大,如果比之前的大,就不满足递增了。
确实,针对解释原因2和3,使用数组[3, 4, 1, 5]作为例子可能会更加合适和清晰。这里我们使用这个数组来重新说明原因2和3,以展示为何不应使用nums[i-1] > nums[i]作为判断条件。

1. 忽略了回溯算法的动态决策过程
  • 例子:考虑数组[3, 4, 1, 5]
    • 在进行到4之后,下一个元素是1。如果使用nums[i-1] > nums[i]4 > 1作为理由停止当前探索,那么我们将错过以1作为起始点、且包含5的递增子序列[1, 5]
    • 这个例子展示了即使当前元素相对于前一个元素是递减的,它仍然可能是未来某个有效递增子序列的起点。
2. 限制了可能的递增子序列的探索
  • 例子:同样考虑数组[3, 4, 1, 5]
    • 如果我们在遍历到4后面的1时,仅因为4 > 1就停止探索,那么我们不仅错过了以1开始的递增子序列,还错过了整个数组中存在的一个非常明显的递增子序列[3, 4, 5]
    • 正确的逻辑应该是,即使1相对于4是递减的,我们仍然继续探索,因为1后面的5可以与数组中的其他元素(如34)形成有效的递增子序列。

1.2、代码-正确写法

class Solution {List<List<Integer>> result = new ArrayList();List<Integer> path = new ArrayList();public List<List<Integer>> findSubsequences(int[] nums) {backTracking(nums, 0);return result;}private void backTracking(int[] nums, int startIndex) {// 终止条件if (path.size() >= 2) {result.add(new ArrayList(path));}// 用一个set判断是否已经使用过HashSet<Integer> set = new HashSet<>();// 遍历for (int i = startIndex; i < nums.length; i++) {// 如果递归时下一层节点的值比子序列最后一个元素值大,不满足递增,所以要返回// 或者之前已经使用过该元素if (!path.isEmpty() && path.get(path.size() - 1) > nums[i] || set.contains(nums[i])) {continue;}// 单层递归逻辑path.add(nums[i]);set.add(nums[i]);// 递归backTracking(nums, i + 1);// 回溯path.remove(path.size() - 1);}}
}

二、全排列

46.原题链接

2.1、科普

[1,2]和[2,1]是同一个排列

2.2、错误写法

class Solution {List<List<Integer>> result = new ArrayList();List<Integer> path = new ArrayList();public List<List<Integer>> permute(int[] nums) {backTraking(nums);return result;}private void backTraking(int nums[]) {if (path.size() > nums.length) {return;}if (path.size() == nums.length) {result.add(new ArrayList(path));}for (int i = 0; i < nums.length; i++) {path.add(nums[i]);// 递归backTraking(nums);path.remove(path.size() - 1);}}
}
  • 为什么是错的
  • 在这里插入图片描述
    看图很明显了,有重复数据,没有进行去重。

2.3、正确写法1

class Solution {List<List<Integer>> result = new ArrayList();List<Integer> path = new ArrayList();//用数组标识是否使用过boolean[] used;public List<List<Integer>> permute(int[] nums) {// 初始化数组used = new boolean[nums.length];backTraking(nums);return result;}private void backTraking(int nums[]) {if (path.size() > nums.length) {return;}if (path.size() == nums.length) {result.add(new ArrayList(path));}for (int i = 0; i < nums.length; i++) {if (used[i]) {continue;}path.add(nums[i]);used[i] = true;// 递归backTraking(nums);used[i] = false;path.remove(path.size() - 1);}}
}

三、全排列II

47.原题链接

3.1、思路

  • 看麻了,代码抄的题解
  • 简单的说,就是在46题的基础上,加了一个去重的逻辑
  • 回溯逻辑(backTraking方法)
  • 终止条件:如果path的大小与nums数组的长度相同,意味着已经找到了一个完整的排列,将其添加到result中,并返回。
  • 循环和选择:遍历每个元素,尝试将其添加到当前路径(path)中。
  • 去重判断:if (i > 0 && nums[i] == nums[i - 1] && !used[i - 1]) { continue; }
    • 这个条件是去重的核心逻辑。当前元素与前一个元素相同,且前一个元素还未被使用(意味着是在回溯的过程中,而不是在向下构建路径的过程中),则跳过当前元素。
      • 这是因为在这种情况下,选择当前元素会产生与之前处理过的元素相同的排列,从而导致重复。
    • 未使用的元素:如果当前元素未被使用,则将其添加到路径中,并标记为已使用,然后递归地继续构建排列,之后撤销这一选择以尝试其他选项。
  • 回溯的撤销操作
    • 在递归调用返回后,执行撤销操作:从路径中移除最近添加的元素,并将used[i]重新标记为false。这一步是回溯算法的典型做法,它确保了在探索完一个元素所有可能性之后,能够正确地恢复状态,并探索下一个元素的所有可能性。

3.2、代码-正确写法

class Solution {List<List<Integer>> result = new ArrayList();List<Integer> path = new ArrayList();// 用数组标识是否使用过boolean[] used;public List<List<Integer>> permuteUnique(int[] nums) {// 初始化数组used = new boolean[nums.length];Arrays.sort(nums);backTraking(nums);return result;}private void backTraking(int nums[]) {if (path.size() == nums.length) {result.add(new ArrayList(path));return;}for (int i = 0; i < nums.length; i++) {if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {continue;}if (used[i] == false) {path.add(nums[i]);used[i] = true;// 递归backTraking(nums);used[i] = false;path.remove(path.size() - 1);}}}
}

看麻了这一题。。

总结

1.感想

  • 马上就是连续刷题一个月了,加油。

2.思维导图

本文思路引用自代码随想录,感谢代码随想录作者。

这篇关于代码随想录刷题day29|非递减子序列全排列全排列II的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/831250

相关文章

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

在C#中调用Python代码的两种实现方式

《在C#中调用Python代码的两种实现方式》:本文主要介绍在C#中调用Python代码的两种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#调用python代码的方式1. 使用 Python.NET2. 使用外部进程调用 Python 脚本总结C#调

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时