3703. 括号的匹配 北京师范大学考研上机真题 栈的思想

2024-03-20 21:28

本文主要是介绍3703. 括号的匹配 北京师范大学考研上机真题 栈的思想,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在算术表达式中,除了加、减、乘、除等运算外,往往还有括号。

包括有大括号 {},中括号 [],小括号 (),尖括号 <> 等。

对于每一对括号,必须先左边括号,然后右边括号;如果有多个括号,则每种类型的左括号和右括号的个数必须相等;对于多重括号的情形,按运算规则,从外到内的括号嵌套顺序为:大括号->中括号->小括号->尖括号,另外相同的括号可以嵌套。

例如,{[()]},{(())},{{}} 为一个合法的表达式,而 ([{}]),{([])},[{<>}] 都是非法的。

输入格式

第一行包含整数 n,表示共有 n个表达式需要判断。

接下来 n 行,每行包含一个括号表达式。

输出格式

每行输出一个表达式的判断结果。

如果合法输出 YES,否则输出 NO

数据范围

1≤n≤100
表达式长度不超过 100100。

输入样例:
5
{[(<>)]}
[()]
<>()[]{}
[{}]
{()}
输出样例:

解释

YES
YES
YES
NO
YES
#include <bits/stdc++.h>using namespace std;unordered_map<char, int> mp{{'{',1},{'[',2},{'(',3},{'<',4},{'}',5},{']',6},{')',7},{'>',8}};char g[110];int main()
{int n;cin >> n;while(n --){memset(g, 0, sizeof g);cin >> g;int len = strlen(g);stack<char> stack;for (int i = len - 1; i >= 0; i --){if(stack.empty())  stack.push(g[i]);else if(mp[stack.top()] > mp[g[i]] && mp[g[i]] > 4) break;  else if(mp[stack.top()] - mp[g[i]] == 4 ) stack.pop();else stack.push(g[i]);}if(stack.empty()) puts("YES");else puts("NO");}return 0;
}

这篇关于3703. 括号的匹配 北京师范大学考研上机真题 栈的思想的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/830769

相关文章

Nginx中location实现多条件匹配的方法详解

《Nginx中location实现多条件匹配的方法详解》在Nginx中,location指令用于匹配请求的URI,虽然location本身是基于单一匹配规则的,但可以通过多种方式实现多个条件的匹配逻辑... 目录1. 概述2. 实现多条件匹配的方式2.1 使用多个 location 块2.2 使用正则表达式

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

关于Gateway路由匹配规则解读

《关于Gateway路由匹配规则解读》本文详细介绍了SpringCloudGateway的路由匹配规则,包括基本概念、常用属性、实际应用以及注意事项,路由匹配规则决定了请求如何被转发到目标服务,是Ga... 目录Gateway路由匹配规则一、基本概念二、常用属性三、实际应用四、注意事项总结Gateway路由

hdu1496(用hash思想统计数目)

作为一个刚学hash的孩子,感觉这道题目很不错,灵活的运用的数组的下标。 解题步骤:如果用常规方法解,那么时间复杂度为O(n^4),肯定会超时,然后参考了网上的解题方法,将等式分成两个部分,a*x1^2+b*x2^2和c*x3^2+d*x4^2, 各自作为数组的下标,如果两部分相加为0,则满足等式; 代码如下: #include<iostream>#include<algorithm

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

hdu 3065 AC自动机 匹配串编号以及出现次数

题意: 仍旧是天朝语题。 Input 第一行,一个整数N(1<=N<=1000),表示病毒特征码的个数。 接下来N行,每行表示一个病毒特征码,特征码字符串长度在1—50之间,并且只包含“英文大写字符”。任意两个病毒特征码,不会完全相同。 在这之后一行,表示“万恶之源”网站源码,源码字符串长度在2000000之内。字符串中字符都是ASCII码可见字符(不包括回车)。

二分最大匹配总结

HDU 2444  黑白染色 ,二分图判定 const int maxn = 208 ;vector<int> g[maxn] ;int n ;bool vis[maxn] ;int match[maxn] ;;int color[maxn] ;int setcolor(int u , int c){color[u] = c ;for(vector<int>::iter

POJ 3057 最大二分匹配+bfs + 二分

SampleInput35 5XXDXXX...XD...XX...DXXXXX5 12XXXXXXXXXXXXX..........DX.XXXXXXXXXXX..........XXXXXXXXXXXXX5 5XDXXXX.X.DXX.XXD.X.XXXXDXSampleOutput321impossible

函数式编程思想

我们经常会用到各种各样的编程思想,例如面向过程、面向对象。不过笔者在该博客简单介绍一下函数式编程思想. 如果对函数式编程思想进行概括,就是f(x) = na(x) , y=uf(x)…至于其他的编程思想,可能是y=a(x)+b(x)+c(x)…,也有可能是y=f(x)=f(x)/a + f(x)/b+f(x)/c… 面向过程的指令式编程 面向过程,简单理解就是y=a(x)+b(x)+c(x)