本文主要是介绍POJ 3494 Largest Submatrix of All 1’s (最大全1子矩阵 单调栈),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
Largest Submatrix of All 1’s
Time Limit: 5000MS | Memory Limit: 131072K | |
Total Submissions: 8107 | Accepted: 2947 | |
Case Time Limit: 2000MS |
Description
Given a m-by-n (0,1)-matrix, of all its submatrices of all 1’s which is the largest? By largest we mean that the submatrix has the most elements.
Input
The input contains multiple test cases. Each test case begins with m and n (1 ≤ m, n ≤ 2000) on line. Then come the elements of a (0,1)-matrix in row-major order on m lines each with n numbers. The input ends once EOF is met.
Output
For each test case, output one line containing the number of elements of the largest submatrix of all 1’s. If the given matrix is of all 0’s, output 0.
Sample Input
2 2 0 0 0 0 4 4 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0
Sample Output
0 4
Source
POJ Founder Monthly Contest – 2008.01.31
题目链接:http://poj.org/problem?id=3494
题目大意:求n*m的01矩阵中,全为1的面积最大子矩阵
题目分析:预处理出每个位置的高度,按照一维的方式对每行都求一次,时间复杂度O(nm)
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int const MAX = 2005;
int a[MAX][MAX], h[MAX], stk[MAX], n, m;int main() {while (scanf("%d %d", &n, &m) != EOF) {for (int i = 1; i <= n; i++) {for (int j = 1; j <= m; j++) {scanf("%d", &a[i][j]);}}int ans = 0;for (int i = 1; i <= n; i++) {for (int j = 1; j <= m; j++) {h[j] = a[i][j] == 0 ? 0 : h[j] + 1;}int top = 0, res = 0, pos = 1;h[m + 1] = 0;while (pos <= m + 1) {if (top == 0 || h[pos] >= h[stk[top]]) {stk[++top] = pos++;} else {int cur = stk[top--];int w = pos - stk[top] - 1;res = max(res, w * h[cur]);}}ans = max(ans, res);}printf("%d\n", ans);}
}
这篇关于POJ 3494 Largest Submatrix of All 1’s (最大全1子矩阵 单调栈)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!