简说期望类问题的解法

2024-03-20 11:08
文章标签 问题 解法 期望 简说

本文主要是介绍简说期望类问题的解法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

近年的acm竞赛中,数学期望问题常有涉及,在以前也常让本人感到很头疼,近来突然开窍,掌握了基本的分析方法,希望对大家有帮助。写得浅薄,可能数学上不够严谨,只供理解。
            首先,来看下期望有啥基本的公式。
对离散型随机变量x,其概率为p,有
对随机变量A、B,有
第二条式子是今天的主角,他表明了期望有线性的性质,简单理解就是期望之间可根据关系,简单运算(不严谨的理解)。 这就为我们解决一个期望问题,不断转化为解决另外的期望问题,最终转化到一个已知的期望上。

举一个求期望最简单的例子,见下图。

假设有个人在 1号节点处,每一分钟他会缘着边随机走到一个节点或者在原地停留,问他走到4号节点需要平均几分钟?
简说期望类问题的解法 - Kicd - Kicds
 
这是个简单的期望问题,我们用Ei(i=1,2,3,4) 表示从i号节点走到4号节点的数学期望值。根据题意对1号节点有
E1=(1/3)*E1+(1/3)*E2+(1/3)*E3+1 ①
表示 他下一分钟可以走到2或者3或在原地1,每个可能概率是1/3 ,注意是下一分钟,故要加上1.
同理我们对节点2,3同样可以列出
E2=(1/3)*E1+(1/3)*E2+(1/3)*E4+1 ②
E3=(1/3)*E1+(1/3)*E3+(1/3)*E4+1 ③
 
那E4等于多少呢? 很明显E4=0 ④,因为他就是要到点4
 
这样上面1234式其实就是组成了一组方程组,解方程组就可得出E1!!,用高斯消元,复杂度是O(n^3)
 
从上述例子,我们可总结出如何解决期望类问题,根据题意,表示出各个状态的期望(上例的Ei,1234),根据概率公式,列出期望之间的方程,解方程即可。
 
下面看用上述思路如何解决一道题(poj2096)
原题见附件1。
题意简述: 一个人受雇于某公司要找出某个软件的bugs和subcomponents,这个软件一共有n个bugs和s个subcomponents,每次他都能同时随机发现1个bug和1个subcomponent,问他找到所有的bugs和subcomponents的期望次数。
我们用E(i,j)表示他找到了i个bugs和j个subcomponents,离找到n个bugs和s个subcomponents还需要的期望次数,这样要求的就是E(0,0),而E(n,s)=0,对任意的E(i,j),1次查找4种情况,没发现任何新的bugs和subcomponents,发现一个新的bug,发现一个新的subcomponent,同时发现一个新的bug和subcomponent,用概率公式可得:
E(i,j)=1+(i*j/n/s)*E(i,j)+(i*(s-j)/n/s)E(i,j+1)+
((n-i)*j/n/s)*E(i+1,j)+(n-i)*(s-j)/n/s*E(i+1,j+1);
这样根据边界就可解出所有的E(i,j),注意因为当我们找到n个bugs和s个subcomponents就结束,对i>n||j>s均无解的情况,并非期望是0.(数学上常见问题,0和不存在的区别)
那这题是否也是要用高斯消元呢? 用高斯消元得话复杂度是O(n^3),达到10^18 根本是不可解的!!
但其实,注意观察方程,当我们要解E(i,j)的话就需要E(i+1,j),E(I,j+1),E(i+1,j+1), 一开始已知E(n,s),那其实只要我们从高往低一个个解出I,j就可以了! 即可根据递推式解出所有的E(I,j) 复杂度是O(n),10^6 ,完美解决。程序见附件2
 
从上面这道题,我们再次看到了解决期望问题的思路,而且是用到了递推解决问题,其实可递推的原因,当我们把各个状态当成是一个个节点时,概率关系为有向边,我们可看到,可递推的问题其实就是这个关系图是无环的!!那必须要用方程组解决的问题其实就是存在环!!!! 而且我还要指出的是用高斯消元的时候,要注意误差的问题,最好把式子适当的增大,避免解小数,否则误差太大,估计也会卡题。
 
本文到此结束,简单讲解了期望类问题的解决思路,更加深入的学习可参考wc2009两篇的论文,希望能帮到大家!!
 
 
                                                    Kicd

                                                 2009.7.31


转载来自:http://kicd.blog.163.com/blog/static/126961911200910168335852/

这篇关于简说期望类问题的解法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/829269

相关文章

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

SpringBoot启动报错的11个高频问题排查与解决终极指南

《SpringBoot启动报错的11个高频问题排查与解决终极指南》这篇文章主要为大家详细介绍了SpringBoot启动报错的11个高频问题的排查与解决,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一... 目录1. 依赖冲突:NoSuchMethodError 的终极解法2. Bean注入失败:No qu

MySQL新增字段后Java实体未更新的潜在问题与解决方案

《MySQL新增字段后Java实体未更新的潜在问题与解决方案》在Java+MySQL的开发中,我们通常使用ORM框架来映射数据库表与Java对象,但有时候,数据库表结构变更(如新增字段)后,开发人员可... 目录引言1. 问题背景:数据库与 Java 实体不同步1.1 常见场景1.2 示例代码2. 不同操作

如何解决mysql出现Incorrect string value for column ‘表项‘ at row 1错误问题

《如何解决mysql出现Incorrectstringvalueforcolumn‘表项‘atrow1错误问题》:本文主要介绍如何解决mysql出现Incorrectstringv... 目录mysql出现Incorrect string value for column ‘表项‘ at row 1错误报错

如何解决Spring MVC中响应乱码问题

《如何解决SpringMVC中响应乱码问题》:本文主要介绍如何解决SpringMVC中响应乱码问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC最新响应中乱码解决方式以前的解决办法这是比较通用的一种方法总结Spring MVC最新响应中乱码解

pip无法安装osgeo失败的问题解决

《pip无法安装osgeo失败的问题解决》本文主要介绍了pip无法安装osgeo失败的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 进入官方提供的扩展包下载网站寻找版本适配的whl文件注意:要选择cp(python版本)和你py

解决Java中基于GeoTools的Shapefile读取乱码的问题

《解决Java中基于GeoTools的Shapefile读取乱码的问题》本文主要讨论了在使用Java编程语言进行地理信息数据解析时遇到的Shapefile属性信息乱码问题,以及根据不同的编码设置进行属... 目录前言1、Shapefile属性字段编码的情况:一、Shp文件常见的字符集编码1、System编码

Spring MVC使用视图解析的问题解读

《SpringMVC使用视图解析的问题解读》:本文主要介绍SpringMVC使用视图解析的问题解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC使用视图解析1. 会使用视图解析的情况2. 不会使用视图解析的情况总结Spring MVC使用视图

Redis解决缓存击穿问题的两种方法

《Redis解决缓存击穿问题的两种方法》缓存击穿问题也叫热点Key问题,就是⼀个被高并发访问并且缓存重建业务较复杂的key突然失效了,无数的请求访问会在瞬间给数据库带来巨大的冲击,本文给大家介绍了Re... 目录引言解决办法互斥锁(强一致,性能差)逻辑过期(高可用,性能优)设计逻辑过期时间引言缓存击穿:给

Java程序运行时出现乱码问题的排查与解决方法

《Java程序运行时出现乱码问题的排查与解决方法》本文主要介绍了Java程序运行时出现乱码问题的排查与解决方法,包括检查Java源文件编码、检查编译时的编码设置、检查运行时的编码设置、检查命令提示符的... 目录一、检查 Java 源文件编码二、检查编译时的编码设置三、检查运行时的编码设置四、检查命令提示符