C语言学习--八种排序算法

2024-03-20 10:04

本文主要是介绍C语言学习--八种排序算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

排序的概念

1.直接插入排序

基本思想

代码实现

算法分析

2.希尔排序

基本思想

代码实现

算法分析

3.冒泡排序

基本思想

代码实现

算法分析

4.快速排序

基本思想

代码实现

算法分析

5.简单选择排序

基本思想

代码实现

算法分析

6.堆排序

基本思想

代码实现

算法分析

7.归并排序

基本思想

代码实现

算法分析

8.基数排序

基本思想

代码实现

算法分析

 总结


排序的概念

排序:所谓排序,就是一串记录,按照某个关键字的大小,按照递增或者递减的顺序进行排列的操作。

稳定性:排序的稳定性,在排序前,有许多相同关键字的记录,他们是按照一定的次序排列的。在排序后,还能按照原先的次序进行排序,那么我们称这种排序算法是稳定的,否则是不稳定的。

内部排序:数据全部在内存中排序。

外部排序:数据元素过多,无法在内存中排序,需要通过内外存之间移动数据来进行排序。

相关算法:


1.直接插入排序

基本思想

直接插入排序是一种简单的插入排序,思想是把待排序的记录按照其关键值的大小逐个插入到一个已经排好序的有序序列中,直到所有的记录插入完成,得到一个新的有序序列。

         就比如说,我们现实生活中的玩扑克牌的方式就用了这种思想,我们每摸到一张牌的时候,原先手上的牌是排好序的,我们拿到这张新的牌,会插入到原先的有序序列,然后插入之后,我们新的序列又是有序的。之后,每次摸牌都按照这种方式,最终会得到一个完全有序的序列。

代码实现

有两种一种是直接插入,另一种是折半插入,区别在于查找插入位置的方法不同而已。

//1.直接插入排序void InsertSort(int *a,int n){int j;for(int i=1;i<n;i++){if(a[i]<a[i-1]){int temp=a[i];for( j=i-1;j>=0&&a[j]>temp;j--){a[j+1]=a[j];}//找到temp需要插入的位置,并将元素后以一个//j等于a[j+1]=temp;}}
}1.2.折半插入排序void InsertSort2(int *a,int n){int i,j,low,high,mid;for(i=1;i<n;i++){int temp=a[i];low=0;high=i-1;while(low<=high){mid=(low+high)/2;if(a[mid]>temp){high=mid-1;}else{low=mid+1;}}//of while找到插入的位置for(j=i-1;j>=high+1;j--){a[j+1]=a[j];}a[high+1]=temp;}
} 

算法分析

        首先,我们先分析算法的时间复杂度,要考虑算法的最好、最坏以及平均复杂度。最好的情况是当这个数组已经有序或者接近有序的情况下,我们只需要进行比较,不需要移动元素,最好时间复杂度为O(N)。而最坏的情况是,这个数组是完全逆序的时候,我们每次比较后,都要移动大量的元素,最坏时间复杂度为O(N2)**,平均复杂度为**O(N^2)。

        那么,这个算法的空间复杂度为O(1),因为只需要使用常量级别的空间。

        最后,这个算法是否稳定,答案是稳定的。因为每次是从后往前依次比较,不会改变原先的次序,移动的过程中也是一个一个进行移动的。


2.希尔排序

基本思想

        希尔排序也是插入排序中的一种,因为其本质就是使用了插入排序,我们从插入排序的结论中可以得出,越接近有序的数组使用插入排序的效率越高。

        希尔排序的思想,就是使一个数组先部分有序,最后在全局有序。那么如何实现部分有序呢,我们可以对数组的元素按照某种规律进行分组,分组后,对组内的记录进行排序,如何重复进行分组和排序,当最终每组的成员只剩一个时,在进行排序的时候,就是使用了插入排序。

代码实现

我们定义了一个d变量,这个变量是用来进行分组的,当d大于0的时候,每次排序其实都是在预排序,也就是对分组内的成员进行排序,d是间隔,也就是将i,i+d,i+2*d...依次进行排序,之后,d/2或者d/3+1,按照某种规律,最终d=1的时候,在进行排序,就是进行了一次直接插入排序。

//2.希尔排序
void shellSort(int *a,int n){int i,j,d;for(d=n/2;d>=1;d=d/2){//分成不同的趟数,第一趟分割d=n/2for(i=d;i<n;i++){//对每一堂的每个小组排序if(a[i]<a[i-d]){int temp=a[i];for(j=i-d;j>=0&&a[j]>temp;j=j-d){a[j+d]=a[j];}a[j+d]=temp;}//of if}//of for2}//of for1
}

算法分析

        希尔排序的时间复杂度是一个复杂的问题,在Kunth所著的《计算机程序设计技巧》第3卷中,利用大量的实验统计资料得出,平均复杂度为O(N^1.25)到O(1.6 * N^1.25)。这里的就暂且不讨论该结果具体得出的方式。

        希尔排序是否是稳定的算法呢?答案是不稳定的,因为我们在预排序的过程中,我们会进行大量的跳动式的移动元素的值,因此会导致不能按照原先的序列进行排序。

        希尔排序中的d是如何取值的呢?当成Shell,也就是该算法的原作者,提出取d= d/2,然后向下取整,直到d=1时。后来Kunth提出取d= d/3 + 1 ,d/3向下取整的方式,直到gap=1时。这两种方式没有说哪个好,哪个坏,因此,使用其中一个即可。


3.冒泡排序

基本思想

        冒泡排序是一种简单的排序算法。它重复地走访过要排序的数列,依次比较两个元素,如果它们的顺序错误就把它们交换过来。如果遍历一遍数组,发现没有进行交换,故该数组已经有序,就不需要再进行排序。

 代码实现

该排序算法的代码实现也很简单,每趟排序,遍历一遍数组,两两比较,每一趟会将最小的值放在第一位。如果该趟排序没有元素交换,则不需要再进行排序了。

//3.冒泡排序
void BubbleSort(int *a,int n){for(int i=0;i<n;i++){//总共要冒n躺for(int j=0;j<n-i;j++){//每一趟比较前n-i个元素if(a[j]>a[j+1]){int temp=a[j];a[j]=a[j+1];a[j+1]=temp;}}}
}

算法分析

        时间复杂度,当元素为逆序时,需要进行n-1趟排序,而每趟需要比较n-1次。故最坏时间复杂度为O(N^2)。当元素为有序时,第一趟后,发现不需要交换元素,则只需要进行n-1次比较。故最好时间复杂度为O(N)。

        空间也是仅使用了常数个辅助单元,故空间复杂度为O(1)

        冒泡排序是一种稳定的算法。


4.快速排序

基本思想

        快速排序是Hoare于1962年提出的一种以二叉树结构的交换排序。

        其本质是基于分治法实现的,基本思想是任取待排序元素序列中的某个元素作为基准,按照该排序码将待排序集合分割成两子序列,左子序列的所有元素均小于基准值,右子序列均大于基准值。然后左右子序列重复该操作,知道该序列有序为止。

代码实现

关于快速排序,其实c语言的<stdlib>库中自带快排函数qsort(),可以直接用,详情请看:

C语言学习--快速排序函数sqort()-CSDN博客

  1. 先将选定的基准值(最左边)直接取出,然后留下一个坑,
  2. 当右指针遇到小于基准值的数时,直接将该值放入坑中,而右指针指向的位置形成新的坑位,
  3. 然后左指针遇到大于基准值的数时,将该值放入坑中,左指针指向的位置形成坑位,
  4. 重复该步骤,直到左右指针相等。最后将基准值放入坑位之中。
  5. 之后也是以基准值为界限,递归排序基准值左右区间。

//4.快速排序
// 挖坑法
int PartSort(int* a, int begin, int end){int key = a[begin];int piti = begin;while (begin < end){// 右边找小,填到左边的坑里面去。这个位置形成新的坑while (begin < end && a[end] >= key){--end;}a[piti] = a[end];piti = end;// 左边找大,填到右边的坑里面去。这个位置形成新的坑while (begin < end && a[begin] <= key){++begin;}a[piti] = a[begin];piti = begin;}a[piti] = key;return piti;
}
// 快速排序递归实现
void QuickSort(int* a, int begin, int end)
{if (begin >= end)return;int keyi = PartSort(a, begin, end);// [begin, keyi-1] keyi [keyi+1, end]QuickSort(a, begin, keyi - 1);QuickSort(a, keyi + 1, end);
}

算法分析

        快速排序整体的综合性能与使用场景都是比较好的,所以才能称为快速排序。时间复杂度在优化后,基本上能达到O(N*logN),且优化后,优势更加明显。

        空间复杂度,因为使用了递归,导致空间复杂度为O(logN)

        算法是不稳定的。


5.简单选择排序

基本思想

        就是每一次从待排序的数据元素中选择最小或者最大的元素,放在序列的起始位置,直到全部排序完毕。

代码实现

//5.简单选择排序
void SelectSort(int *a,int n){for(int i=0;i<n-1;i++){//n-1躺,每一趟找一个最小值放到最前面int min=i;//记录最小值所在的下标便于交换位置for(int j=i+1;j<n;j++){if(a[j]<a[min]){min=j;}}//最小值所在下标minint temp=a[min];a[min]=a[i];a[i]=temp;//把每趟的最小值已到了最前面来}
}

每次找到最小(最大)的值,记录当前的位置,并且与开始位置进行交换。然后重复进行该操作,直到集合中只剩一个元素为止。

算法分析

        简单选择排序是比较简单的一种,但是效率并不高,无论是什么情况,算法时间复杂度都为O(N^2),因此,实际中很少使用。

        空间复杂度为O(1),仅使用了常量级别的空间。

        直接选择排序是否是稳定的算法呢?答案是不稳定的,在交换的过程中,可能会导致相对次序进行改变。比如,表L={2,2,1},经过第一趟排序后,结果为L={1,2,2},显示已经和原先的次序不一致,故该排序算法是不稳定的。


6.堆排序

后面三种,堆排序,归并排序,和基数排序不太好实现,我觉得理解原理就可以了;

基本思想

        在了解堆排序之前,首先要知道堆这个数据结构。

        堆是一颗完全二叉树,满足根节点大于或者小于左右孩子结点。堆可以分为大根堆和小根堆。大根堆的最大元素存放在根结点,任意一颗非根节点的值小于等于其双亲结点的值。而小根堆与大根堆恰好相反,小根堆的根元素为最小。

        大根堆可以存放在一个数组中,节点下标i,对应的左右孩子分别是:2*i,2*i+1

        那么,堆排序的思想很简单,首先在排序前,将待排序的数组构建成为一个堆,以大根堆为例,将堆顶元素与堆底元素进行交换,然后继续将堆顶元素进行向下调整,然后保持大根堆的特性。因为对顶元素永远是当前堆中最大的一个,将其放在最后,就相当于把最大元素放在了数组的最后,再将堆的范围缩小,因此大根堆排序后的结果为升序。

代码实现

//6.堆排序
void swap(int* p1, int* p2){int tmp = *p1;*p1 = *p2;*p2 = tmp;
}
// 堆排序
// 向下取整
void AdjustDwon(int* a, int n, int root){int child = root * 2 + 1;while (child < n){if (child + 1 < n && a[child + 1] > a[child]){child++;}if (a[child] > a[root]){swap(&a[child], &a[root]);root = child;child = root * 2 + 1;}else{break;}}
}
void HeapSort(int* a, int n){// 建堆方式2:O(N)for (int i = (n-2) / 2; i >= 0; --i){AdjustDwon(a, n, i);}// O(N*logN)int end = n - 1;while (end > 0){swap(&a[0], &a[end]);AdjustDwon(a, end, 0);--end;}
}

算法分析

        堆排序是一种效率很高的排序,通过使用堆的数据结构来进行排序,时间复杂度为O(N*logN),建堆的时间为O(N),然后有n-1次向下调整操作,每次调整的时间复杂度与高度有关,而h=log2n + 1,故时间复杂度为O(N*logN)。

        空间也是仅使用了常数个辅助单元,故空间复杂的为O(1)。

        堆排序是否是稳定的算法呢?答案是不稳定的,在进行筛选的过程中,可能把后面相同的元素调整到前面来。


7.归并排序

基本思想

        归并排序是建立在归并操作上的一种有效的排序算法,该算法采用的是分治法。其思想就是将序列分成n个子序列,再使用子序列有序,之后,将其合并为一个新的有序表,如果两个有序表合并为一个有序表,称为二路归并

代码实现

//7.归并排序
void _MergeSort(int* a, int begin, int end, int* tmp){int mid = (begin + end) / 2;// [begin, mid] [mid+1, end] 分治递归,让子区间有序_MergeSort(a, begin, mid, tmp);_MergeSort(a, mid + 1, end, tmp);//归并 [begin, mid] [mid+1, end]int begin1 = begin, end1 = mid;int begin2 = mid + 1, end2 = end;int i = begin1;while (begin1 <= end1 && begin2 <= end2){if (a[begin1] < a[begin2]){tmp[i++] = a[begin1++];}else{tmp[i++] = a[begin2++];}}while (begin1 <= end1){tmp[i++] = a[begin1++];}while (begin2 <= end2){tmp[i++] = a[begin2++];}// 把归并数据拷贝回原数组memcpy(a + begin, tmp + begin, (end - begin + 1) * sizeof(int));
}
void MergeSort(int* a, int n){// 借助一个新的辅助空间来帮助合并int* tmp = (int*)malloc(sizeof(int) * n);_MergeSort(a, 0, n - 1, tmp);free(tmp);
}

算法分析

归并的缺点在于需要O(N)的空间复杂度,归并排序的思考更多的是解决在磁盘中的外排序问题。

每趟归并的时间为O(N),并且需要log2N趟归并,所以时间复杂度为O(N*logN)

二路归并排序不会改变相同关键字记录的相对次序,因此是一种稳定的算法。


8.基数排序

基本思想

  1. 将所有待比较数值统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成以后, 数列就变成一个有序序列。
  2. 这样说明,比较难理解,下面我们看一个图文解释,理解基数排序的步骤
    在这里插入图片描述

注意:基数排序中不能出现负数!!! 

代码实现

//8.基数排序
//基数排序
void RadixSort(int* arr, int n){//max为数组中最大值int max = arr[0];int base = 1;//找出数组中的最大值for (int i = 0; i < n; i++){if (arr[i] > max){max = arr[i];}}//循环结束max就是数组最大值//临时存放数组元素的空间int* tmp = (int*)malloc(sizeof(int)*n);//循环次数为最大数的位数while (max / base > 0){	//定义十个桶,桶里面装的不是数据本身,而是每一轮排序对应(十、白、千...)位的个数//统计每个桶里面装几个数int bucket[10] = { 0 };for (int i = 0; i < n; i++){//arr[i] / base % 10可以取到个位、十位、百位对应的数字bucket[arr[i] / base % 10]++;}//循环结束就已经统计好了本轮每个桶里面应该装几个数//将桶里面的元素依次累加起来,就可以知道元素存放在临时数组中的位置for (int i = 1; i < 10; i++){bucket[i] += bucket[i - 1];}//循环结束现在桶中就存放的是每个元素应该存放到临时数组的位置//开始放数到临时数组tmpfor (int i = n - 1; i >= 0; i--){tmp[bucket[arr[i] / base % 10] - 1] = arr[i];bucket[arr[i] / base % 10]--;}//不能从前往后放,因为这样会导致十位排好了个位又乱了,百位排好了十位又乱了/*for (int i = 0; i < n; i++){tmp[bucket[arr[i] / base % 10] - 1] = arr[i];bucket[arr[i] / base % 10]--;}*///把临时数组里面的数拷贝回去for (int i = 0; i < n; i++){arr[i] = tmp[i];}base *= 10;}free(tmp);
}

算法分析

基数排序的时间复杂度跟基数选取有关,平均复杂度为O(k·n)。基数排序为稳定排序算法。


 总结

这篇关于C语言学习--八种排序算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/829111

相关文章

关于Java内存访问重排序的研究

《关于Java内存访问重排序的研究》文章主要介绍了重排序现象及其在多线程编程中的影响,包括内存可见性问题和Java内存模型中对重排序的规则... 目录什么是重排序重排序图解重排序实验as-if-serial语义内存访问重排序与内存可见性内存访问重排序与Java内存模型重排序示意表内存屏障内存屏障示意表Int

C语言线程池的常见实现方式详解

《C语言线程池的常见实现方式详解》本文介绍了如何使用C语言实现一个基本的线程池,线程池的实现包括工作线程、任务队列、任务调度、线程池的初始化、任务添加、销毁等步骤,感兴趣的朋友跟随小编一起看看吧... 目录1. 线程池的基本结构2. 线程池的实现步骤3. 线程池的核心数据结构4. 线程池的详细实现4.1 初

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖