pandas28 update-用另一个DataFrame中的非NA值进行就地修改(补全全部实例 tcy)

2024-03-20 09:38

本文主要是介绍pandas28 update-用另一个DataFrame中的非NA值进行就地修改(补全全部实例 tcy),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

============================================================
1.函数df.update(other, join='left', overwrite=True, filter_func=None, raise_conflict=False)用途:# 用另一个DataFrame中的非NA值进行就地修改参数:# other:DataFrame,至少有一个匹配的索引/列标签;Series必设name属性# join:{'left'}仅实现左连接,保留原始对象的索引和列# overwrite =True:处理重叠键(行索引)非NA值:#     * True:覆盖原始df值#     * False:仅更新原始df中na的值# filter_func:callable(1d-array) - > boolean 1d-array#     可替换NA以外值。返回True表示值应该更新。函数参数作用于df# raise_conflict=False:为True,则会在df和other同一位置都是非na值时引发ValueError
============================================================
# 实例1.1:
df = pd.DataFrame({'A': [11, 12, 13],'B': [14, 15, 16]})
new_df = pd.DataFrame({'B': [21, 22,23],'C': [24, 25, 26]})
df.update(new_df)
dfA   B
0  11  21
1  12  22
2  13  23# 实例1.2:df长度不会增加,仅更新匹配的索引/列标签处的值。
df = pd.DataFrame({'A': ['a1', 'a2', 'a3'], 'B': ['b1', 'b2', 'b3']})
new_df = pd.DataFrame({'B': ['c1', 'c2', 'c3', 'c4', 'c5']})
df.update(new_df)
dfA   B
0  a1  c1
1  a2  c2
2  a3  c3# 实例1.3:
df = pd.DataFrame({'A': [11, 12, 13],'B': [14, 15, 16]})
new_df = pd.DataFrame({'B': ['c1', 'c2', 'c3', 'c4', 'c5']})
df.update(new_df)
dfA   B
0  11  c1
1  12  c2
2  13  c3
============================================================
# 实例2.1:对于Series,必须设置其name属性。
df = pd.DataFrame({'A': ['a1', 'a2', 'a3'], 'B': ['b1', 'b2', 'b3']})
new_column = pd.Series(['c1', 'c3'], name='B', index=[0, 2])
df.update(new_column)
dfA   B
0  a1  c1
1  a2  b2
2  a3  c3# 实例2.2:
df = pd.DataFrame({'A': ['a1', 'a2', 'a3'], 'B': ['b1', 'b2', 'b3']})
new_column = pd.Series(['c2', 'c3'], name='B', index=[1, 2])
df.update(new_column)
dfA   B
0  a1  b1
1  a2  c2
2  a3  c3
============================================================
# 实例3:如果other包含NaN,则不会更新df的值
df = pd.DataFrame({'A': [11, 12, 13],'B': [14, 15, 16]})
new_df = pd.DataFrame({'B': [24, np.nan, 26]})
df.update(new_df)
dfA     B
0  11  24.0
1  12  15.0
2  13  26.0
============================================================
# 实例4:过滤函数df>=15的值被替代
df = pd.DataFrame({'A': [11, 12, 13],'B': [14, 15, 16]})
new_df = pd.DataFrame({'B': [21, 22,23],'C': [24, 25, 26]})
df.update(new_df,filter_func=lambda  s:s>=15)
dfA   B
0  11  14
1  12  22
2  13  23
============================================================
# 实例5.1:overwrite重复行索引
df = pd.DataFrame({'A': [11, 12, 13],'B': [14, np.nan, 16]},index=[0,1,1])
new_df = pd.DataFrame({'B': [21, 22,23],'C': [24, 25, 26]})
df.update(new_df)
dfA     B
0  11  21.0
1  12  22.0
1  13  22.0# 实例5.2:df = pd.DataFrame({'A': [11, 12, 13],'B': [14, np.nan, 16]},index=[0,1,1])
new_df = pd.DataFrame({'B': [21, 22,23],'C': [24, 25, 26]})
df.update(new_df,overwrite=True)
dfA     B
0  11  21.0
1  12  22.0
1  13  22.0
============================================================
# 实例6.1:
df = pd.DataFrame({'A': [11, 12],'B': [np.nan, np.nan]})
new_df = pd.DataFrame({'B': [21, 22],'C': [24, 25]})
df.update(new_df,raise_conflict=True)
dfA     B
0  11  21.0
1  12  22.0# 实例6.2:df = pd.DataFrame({'A': [11, 12],'B': [13, np.nan]})
new_df = pd.DataFrame({'B': [21, 22],'C': [24, 25]})
df.update(new_df,raise_conflict=True)#ValueError;df和other同一位置都是非na值时引发ValueError

 

这篇关于pandas28 update-用另一个DataFrame中的非NA值进行就地修改(补全全部实例 tcy)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/829050

相关文章

SpringSecurity6.0 如何通过JWTtoken进行认证授权

《SpringSecurity6.0如何通过JWTtoken进行认证授权》:本文主要介绍SpringSecurity6.0通过JWTtoken进行认证授权的过程,本文给大家介绍的非常详细,感兴趣... 目录项目依赖认证UserDetailService生成JWT token权限控制小结之前写过一个文章,从S

Docker镜像修改hosts及dockerfile修改hosts文件的实现方式

《Docker镜像修改hosts及dockerfile修改hosts文件的实现方式》:本文主要介绍Docker镜像修改hosts及dockerfile修改hosts文件的实现方式,具有很好的参考价... 目录docker镜像修改hosts及dockerfile修改hosts文件准备 dockerfile 文

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

C# WinForms存储过程操作数据库的实例讲解

《C#WinForms存储过程操作数据库的实例讲解》:本文主要介绍C#WinForms存储过程操作数据库的实例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、存储过程基础二、C# 调用流程1. 数据库连接配置2. 执行存储过程(增删改)3. 查询数据三、事务处

Java进行文件格式校验的方案详解

《Java进行文件格式校验的方案详解》这篇文章主要为大家详细介绍了Java中进行文件格式校验的相关方案,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、背景异常现象原因排查用户的无心之过二、解决方案Magandroidic Number判断主流检测库对比Tika的使用区分zip

Java使用Curator进行ZooKeeper操作的详细教程

《Java使用Curator进行ZooKeeper操作的详细教程》ApacheCurator是一个基于ZooKeeper的Java客户端库,它极大地简化了使用ZooKeeper的开发工作,在分布式系统... 目录1、简述2、核心功能2.1 CuratorFramework2.2 Recipes3、示例实践3

springboot security验证码的登录实例

《springbootsecurity验证码的登录实例》:本文主要介绍springbootsecurity验证码的登录实例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录前言代码示例引入依赖定义验证码生成器定义获取验证码及认证接口测试获取验证码登录总结前言在spring

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很