本文主要是介绍pandas28 update-用另一个DataFrame中的非NA值进行就地修改(补全全部实例 tcy),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
============================================================
1.函数df.update(other, join='left', overwrite=True, filter_func=None, raise_conflict=False)用途:# 用另一个DataFrame中的非NA值进行就地修改参数:# other:DataFrame,至少有一个匹配的索引/列标签;Series必设name属性# join:{'left'}仅实现左连接,保留原始对象的索引和列# overwrite =True:处理重叠键(行索引)非NA值:# * True:覆盖原始df值# * False:仅更新原始df中na的值# filter_func:callable(1d-array) - > boolean 1d-array# 可替换NA以外值。返回True表示值应该更新。函数参数作用于df# raise_conflict=False:为True,则会在df和other同一位置都是非na值时引发ValueError
============================================================
# 实例1.1:
df = pd.DataFrame({'A': [11, 12, 13],'B': [14, 15, 16]})
new_df = pd.DataFrame({'B': [21, 22,23],'C': [24, 25, 26]})
df.update(new_df)
dfA B
0 11 21
1 12 22
2 13 23# 实例1.2:df长度不会增加,仅更新匹配的索引/列标签处的值。
df = pd.DataFrame({'A': ['a1', 'a2', 'a3'], 'B': ['b1', 'b2', 'b3']})
new_df = pd.DataFrame({'B': ['c1', 'c2', 'c3', 'c4', 'c5']})
df.update(new_df)
dfA B
0 a1 c1
1 a2 c2
2 a3 c3# 实例1.3:
df = pd.DataFrame({'A': [11, 12, 13],'B': [14, 15, 16]})
new_df = pd.DataFrame({'B': ['c1', 'c2', 'c3', 'c4', 'c5']})
df.update(new_df)
dfA B
0 11 c1
1 12 c2
2 13 c3
============================================================
# 实例2.1:对于Series,必须设置其name属性。
df = pd.DataFrame({'A': ['a1', 'a2', 'a3'], 'B': ['b1', 'b2', 'b3']})
new_column = pd.Series(['c1', 'c3'], name='B', index=[0, 2])
df.update(new_column)
dfA B
0 a1 c1
1 a2 b2
2 a3 c3# 实例2.2:
df = pd.DataFrame({'A': ['a1', 'a2', 'a3'], 'B': ['b1', 'b2', 'b3']})
new_column = pd.Series(['c2', 'c3'], name='B', index=[1, 2])
df.update(new_column)
dfA B
0 a1 b1
1 a2 c2
2 a3 c3
============================================================
# 实例3:如果other包含NaN,则不会更新df的值
df = pd.DataFrame({'A': [11, 12, 13],'B': [14, 15, 16]})
new_df = pd.DataFrame({'B': [24, np.nan, 26]})
df.update(new_df)
dfA B
0 11 24.0
1 12 15.0
2 13 26.0
============================================================
# 实例4:过滤函数df>=15的值被替代
df = pd.DataFrame({'A': [11, 12, 13],'B': [14, 15, 16]})
new_df = pd.DataFrame({'B': [21, 22,23],'C': [24, 25, 26]})
df.update(new_df,filter_func=lambda s:s>=15)
dfA B
0 11 14
1 12 22
2 13 23
============================================================
# 实例5.1:overwrite重复行索引
df = pd.DataFrame({'A': [11, 12, 13],'B': [14, np.nan, 16]},index=[0,1,1])
new_df = pd.DataFrame({'B': [21, 22,23],'C': [24, 25, 26]})
df.update(new_df)
dfA B
0 11 21.0
1 12 22.0
1 13 22.0# 实例5.2:df = pd.DataFrame({'A': [11, 12, 13],'B': [14, np.nan, 16]},index=[0,1,1])
new_df = pd.DataFrame({'B': [21, 22,23],'C': [24, 25, 26]})
df.update(new_df,overwrite=True)
dfA B
0 11 21.0
1 12 22.0
1 13 22.0
============================================================
# 实例6.1:
df = pd.DataFrame({'A': [11, 12],'B': [np.nan, np.nan]})
new_df = pd.DataFrame({'B': [21, 22],'C': [24, 25]})
df.update(new_df,raise_conflict=True)
dfA B
0 11 21.0
1 12 22.0# 实例6.2:df = pd.DataFrame({'A': [11, 12],'B': [13, np.nan]})
new_df = pd.DataFrame({'B': [21, 22],'C': [24, 25]})
df.update(new_df,raise_conflict=True)#ValueError;df和other同一位置都是非na值时引发ValueError
这篇关于pandas28 update-用另一个DataFrame中的非NA值进行就地修改(补全全部实例 tcy)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!