本文主要是介绍pandas27 merge(数据库风格合并indicator参数实例)( tcy),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
# 实例6:indicator添加分类到输出df1 = pd.DataFrame({'no': [10, 11], 'name':['Tom', 'Bob']})
df2 = pd.DataFrame({'no': [11, 12],'weight':[20, 20]})pd.merge(df1, df2, on='no', how='outer', indicator=True) #添加分类到输出
pd.merge(df1, df2, on='no', how='outer', indicator='分类') #indicator参数为字符串no name weight _merge no name weight 分类
0 10 Tom NaN left_only 0 10 Tom NaN left_only
1 11 Bob 20.0 both 1 11 Bob 20.0 both
2 12 NaN 20.0 right_only 2 12 NaN 20.0 right_only============================================================
# 实例7:连接多个DataFrame或Panel对象
# DataFrames传递列表或元组,join() 在它们的索引上将它们连接在一起left = pd.DataFrame({'k': ['K0', 'K1', 'K2'], 'v': [1, 2, 3]})
right = pd.DataFrame({'k': ['K0', 'K0', 'K3'], 'v': [4, 5, 6]})
left = left.set_index('k')
right = right.set_index('k')
right2 = pd.DataFrame({'v': [7, 8, 9]}, index=['K1', 'K1', 'K2'])result = left.join([right, right2])# left right right2 v_x v_y vv v v K0 1 4.0 NaN
k k K1 7 K0 1 5.0 NaN
K0 1 K0 4 K1 8 K1 2 NaN 7.0
K1 2 K0 5 K2 9 K1 2 NaN 8.0
K2 3 K3 6 K2 3 NaN 9.0============================================================
备注:
# 合并将保留连接键,保留连接键的dtype# 实例1:
left = pd.DataFrame({'key': [1], 'v1': [10]})
right = pd.DataFrame({'key': [1, 2], 'v1': [20, 30]})result1=pd.merge(left, right, how='outer') #保留连接键key v1
pd.merge(left, right, how='outer').dtypes
reslult2=pd.merge(left, right, how='outer', on='key')#缺少引入值生成的dtype将是向上兼容
pd.merge(left, right, how='outer', on='key').dtypes# result1 result2key v1 key v1_x v1_y
0 1 10 0 1 10.0 20
1 1 20 1 2 NaN 30
2 2 30int64 int64 int64 float64 int64# 实例2:from pandas.api.types import CategoricalDtypeX = pd.Series(np.random.choice(['a', 'b'], size=(4,)))
X = X.astype(CategoricalDtype(categories=['a', 'b']))left = pd.DataFrame({'X': X,'Y': np.random.choice(['ss1', 'ss2'], size=(4,))})
right = pd.DataFrame({ 'X': pd.Series(['a', 'b'],dtype=CategoricalDtype(['a', 'b'])), 'Z': [1, 2] })result = pd.merge(left, right, how='outer')left.dtypes
right.dtypes
result.dtypes# left right resultX Y X Z X Y Z
0 a ss2 0 a 1 0 a ss2 1
1 b ss1 1 b 2 1 a ss2 1
2 a ss2 2 b ss1 2
3 b ss2 3 b ss2 2X category X category X category
Y object Z int64 Y objectZ int64# 注意 类别dtypes必须完全相同,即相同的类别和有序属性。否则结果将强制转换为objectdtype。
# 注意 与categorydtype 合并相比,在相同的dtypes上合并可以非常高效
============================================================
这篇关于pandas27 merge(数据库风格合并indicator参数实例)( tcy)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!