OepnCV(九)——对于腐蚀操作和膨胀操作

2024-03-19 19:12
文章标签 操作 膨胀 腐蚀 oepncv

本文主要是介绍OepnCV(九)——对于腐蚀操作和膨胀操作,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

图片的腐蚀操作

在OpenCV中可以利用cv2.erode()函数进行腐蚀操作,腐蚀操作是形态学处理的一种,它通常用于去除图像中的噪声以及使目标物体变小。

在OpenCV中cv2.erosion()函数进行腐蚀,cv2.erode(src, kernel, dst, anchor, iterations, borderType, borderValue) 。其中第一个参数src表示的是需要处理的图片内容;第二个参数kernel表示的是腐蚀操作中使用的结构元素,可以是一个预先定义的核或者自定义的形状;第三个参数dst表示的是输出图像,存储腐蚀操作的结果;第四个参数anchor表示的是结构元素的锚点,默认值为(-1, -1),表示锚点位于结构元素的中心;第五个参数iterations表示的是腐蚀进行的次数;第六个参数borderType表示的是边界处理类型,默认值为cv2.BORDER_CONSTANT;第七个参数表示的是当边界类型为cv2.BORDER_CONSTANT时,用于指定边界填充的值,默认为0。(其中dst,anchor,borderType和borderValue参数可以省略)。

 在OpenCV中,可以对图像进行多次腐蚀操作,例如如下现在对于OpenCV中一张经典的图片进行操作:

图片链接为 (erode图片链接)(演示使用,如果侵权可删除)

下面对于上图进行腐蚀操作:

import cv2
import matplotlib.pyplot as plt
import numpy as npimg=cv2.imread(r'D:\Photo\erode.jpg')
kernel=np.ones((5,5),np.uint8)
img_erosion=cv2.erode(img,kernel,iterations=1)
cv2.imshow('img_erosion',img_erosion)
cv2.waitKey(0)
cv2.destroyAllWindows()

在上面的代码中,设置了腐蚀的次数为1,kernel采用的5×5的矩阵,因为图片是黑白颜色,图中所有像素点的值为255和0。例如下面这个矩阵:

OepnCV中会有四周像中间部位腐蚀,像如下这种:

由此可以这种结果情况下,白色区域肯定会越来越小,而黑色背景区域会变大。

运行结果如下所示:

对比两张图片可以看到,第一张图片中的蜘蛛四个角已经被腐蚀掉了,并且身体面积也明显变小,腐蚀效果很好。

同时也可以进行多次的腐蚀操作,我们可以多次腐蚀的操作(只需设置iterations的值为2、3次即可):

import cv2
import matplotlib.pyplot as plt
import numpy as npimg=cv2.imread(r'D:\Photo\erode.jpg')
kernel=np.ones((5,5),np.uint8)
img_erosion1=cv2.erode(img,kernel,iterations=1)
img_erosion2=cv2.erode(img,kernel,iterations=2)
img_erosion3=cv2.erode(img,kernel,iterations=3)
cv2.imshow('img_erosion1',img_erosion1)
cv2.imshow('img_erosion2',img_erosion2)
cv2.imshow('img_erosion3',img_erosion3)
cv2.waitKey(0)
cv2.destroyAllWindows()

运行结果如下所示:

可以从上面的结果中看出在经历了多次的腐蚀操作之后,图中的蜘蛛面积逐渐变小了,再经历多次模式的时候蜘蛛的面积会变得更小。

通过,如果不同结构元素得到的腐蚀结果也是不同的。例如将5×5的结构元素变为3×3的结构元素,像下面一样:

腐蚀方向为:

同样只需要将上面的代码中的kernel=np.ones((5,5),np.uint8)改为kernel=np.ones((3,3),np.uint8)即可,即:

kernel=np.ones((5,5),np.uint8)
img_erosion1=cv2.erode(img,kernel,iterations=1)

作为对比,我们将3×3的矩阵和5×5的矩阵在一起进行比较:

import cv2
import numpy as npimg=cv2.imread(r'D:\Photo\erode.jpg')
kernel1=np.ones((3,3),np.uint8)
kernel2=np.ones((5,5),np.uint8)
img_erosion1=cv2.erode(img,kernel1,iterations=1)
img_erosion2=cv2.erode(img,kernel2,iterations=1)
cv2.imshow('img_erosion1',img_erosion1)
cv2.imshow('img_erosion2',img_erosion2)
cv2.waitKey(0)
cv2.destroyAllWindows()

运行结果如下所示:

可以看到,单从腐蚀效果来看的画,5×5的矩阵效果是更好的,因为3×3的矩阵中四肢部分还有残留部分。 在实际操作,Kernel选择的矩阵尽量为单数行和单数列的。

图片的膨胀操作

在OpenCV中可以利用cv2.dilate()函数进行膨胀操作,与腐蚀操作相同,膨胀操作是形态学处理的一种,它通常用于去除图像中的噪声以及使目标物体变大。

在OpenCV中的cv2.dilate()函数所需要的参数与cv2.erosion()相同,在这里将不再介绍。选择如下这张图片进行操作。如下所示为原始图片:

进行膨胀操作的代码如下所示:

import cv2
import matplotlib.pyplot as plt
import numpy as npimg=cv2.imread(r'D:\Photo\3.png')
kernel=np.ones((3,3),np.uint8)
img_dilate=cv2.dilate(img,kernel,iterations=1)
cv2.imshow('img',img)
cv2.imshow('img_dilate',img_dilate)
cv2.waitKey(0)
cv2.destroyAllWindows()

运行结果如下所示:

 可以看到图片中的白色部分的进行了膨胀,膨胀之后将白色j里的黑色像素的面积变小了。

将膨胀次数设置为5次,我们再观察图片变化:

可以看到,在进行膨胀5次之后图片的变化,图片中白色j中的黑色像素已经全部消失,并且白色j的像素也明显变大了。 

图片的开运算和闭运算

OpenCV可以对图片进行开运算和闭运算,什么是开运算呢?既是对图像先进行腐蚀操作后进行膨胀操作,同样先进行膨胀后进行腐蚀就是闭运算。

下面将开运算和闭运算分别进行比较为:

import cv2
import matplotlib.pyplot as plt
import numpy as npimg=cv2.imread(r'D:\Photo\3.png')
kernel=np.ones((5,5),np.uint8)
img_opening=cv2.morphologyEx(img,cv2.MORPH_OPEN,kernel)
img_closing=cv2.morphologyEx(img,cv2.MORPH_CLOSE,kernel)
cv2.imshow('image',img)
cv2.imshow('img_opening',img_opening)
cv2.imshow('img_closing',img_closing)
cv2.waitKey(0)
cv2.destroyAllWindows()

运行结果为:

原图和开运算之后的图片

 

原图和闭运算之后的图片

(直接看可能并不明显,建议用户点击观看)

在一些领域中,腐蚀和膨胀操作发挥着很大的作用, 比如一些工作清除不必要的像素有很大作用。

这篇关于OepnCV(九)——对于腐蚀操作和膨胀操作的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/826992

相关文章

Springboot的ThreadPoolTaskScheduler线程池轻松搞定15分钟不操作自动取消订单

《Springboot的ThreadPoolTaskScheduler线程池轻松搞定15分钟不操作自动取消订单》:本文主要介绍Springboot的ThreadPoolTaskScheduler线... 目录ThreadPoolTaskScheduler线程池实现15分钟不操作自动取消订单概要1,创建订单后

SpringBoot操作spark处理hdfs文件的操作方法

《SpringBoot操作spark处理hdfs文件的操作方法》本文介绍了如何使用SpringBoot操作Spark处理HDFS文件,包括导入依赖、配置Spark信息、编写Controller和Ser... 目录SpringBoot操作spark处理hdfs文件1、导入依赖2、配置spark信息3、cont

使用JavaScript操作本地存储

《使用JavaScript操作本地存储》这篇文章主要为大家详细介绍了JavaScript中操作本地存储的相关知识,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... 目录本地存储:localStorage 和 sessionStorage基本使用方法1. localStorage

使用JavaScript将PDF页面中的标注扁平化的操作指南

《使用JavaScript将PDF页面中的标注扁平化的操作指南》扁平化(flatten)操作可以将标注作为矢量图形包含在PDF页面的内容中,使其不可编辑,DynamsoftDocumentViewer... 目录使用Dynamsoft Document Viewer打开一个PDF文件并启用标注添加功能扁平化

JavaScript DOM操作与事件处理方法

《JavaScriptDOM操作与事件处理方法》本文通过一系列代码片段,详细介绍了如何使用JavaScript进行DOM操作、事件处理、属性操作、内容操作、尺寸和位置获取,以及实现简单的动画效果,涵... 目录前言1. 类名操作代码片段代码解析2. 属性操作代码片段代码解析3. 内容操作代码片段代码解析4.

SpringBoot使用Apache POI库读取Excel文件的操作详解

《SpringBoot使用ApachePOI库读取Excel文件的操作详解》在日常开发中,我们经常需要处理Excel文件中的数据,无论是从数据库导入数据、处理数据报表,还是批量生成数据,都可能会遇到... 目录项目背景依赖导入读取Excel模板的实现代码实现代码解析ExcelDemoInfoDTO 数据传输

Python使用asyncio实现异步操作的示例

《Python使用asyncio实现异步操作的示例》本文主要介绍了Python使用asyncio实现异步操作的示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋... 目录1. 基础概念2. 实现异步 I/O 的步骤2.1 定义异步函数2.2 使用 await 等待异

MyBatis框架实现一个简单的数据查询操作

《MyBatis框架实现一个简单的数据查询操作》本文介绍了MyBatis框架下进行数据查询操作的详细步骤,括创建实体类、编写SQL标签、配置Mapper、开启驼峰命名映射以及执行SQL语句等,感兴趣的... 基于在前面几章我们已经学习了对MyBATis进行环境配置,并利用SqlSessionFactory核

Java操作xls替换文本或图片的功能实现

《Java操作xls替换文本或图片的功能实现》这篇文章主要给大家介绍了关于Java操作xls替换文本或图片功能实现的相关资料,文中通过示例代码讲解了文件上传、文件处理和Excel文件生成,需要的朋友可... 目录准备xls模板文件:template.xls准备需要替换的图片和数据功能实现包声明与导入类声明与

Qt实现文件的压缩和解压缩操作

《Qt实现文件的压缩和解压缩操作》这篇文章主要为大家详细介绍了如何使用Qt库中的QZipReader和QZipWriter实现文件的压缩和解压缩功能,文中的示例代码简洁易懂,需要的可以参考一下... 目录一、实现方式二、具体步骤1、在.pro文件中添加模块gui-private2、通过QObject方式创建