ImageNet 2017夺冠架构SENetSENet

2024-03-19 17:50

本文主要是介绍ImageNet 2017夺冠架构SENetSENet,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

SENet

论文链接:https://arxiv.org/abs/1709.01507
代码地址:https://github.com/hujie-frank/SENet

1. 概述

此论文是由Momenta公司所作并发于2017CVPR,论文中的SENet赢得了ImageNet最后一届(ImageNet 2017)的图像识别冠军,论文的作者也很无私开源了其代码,并有caffe版本的实现。论文的核心点在对CNN中的feature channel(特征通道依赖性)利用和创新。看了论文最后第六节的分析,感觉作者肯定在网络架构上尝试了无数次实验才得到最后的相关的一些结论,这里膜拜一下。
  卷积核作为CNN的核心,通常都是在局部感受野上将空间(spatial)信息和特征维度(channel-wise)的信息进行聚合最后获取全局信息。卷积神经网络由一系列卷积层、非线性层和下采样层构成,这样它们能够从全局感受野上去捕获图像的特征来进行图像的描述,然而去学到一个性能非常强劲的网络是相当困难的。
论文的动机是从特征通道之间的关系入手,希望显式地建模特征通道之间的相互依赖关系。另外,没有引入一个新的空间维度来进行特征通道间的融合,而是采用了一种全新的“特征重标定”策略。具体来说,就是通过学习的方式来自动获取到每个特征通道的重要程度,然后依照这个重要程度去增强有用的特征并抑制对当前任务用处不大的特征,通俗来讲,就是让网络利用全局信息有选择的增强有益feature通道并抑制无用feature通道,从而能实现feature通道自适应校准。

2. 论文的核心

论文通过显式地建模通道之间的相互依赖关系,自适应地重新校准通道的特征响应,从而设计了SE block如图1所示。论文的核心就是Squeeze和Excitation(论文牛的地方)两个操作。下面先介绍一下这两个操作是怎么实现的并介绍其主要的作用,论文中给出了几个公式很清晰的表示出了其原理,我将结合这几个公式阐述Squeeze和Excitation的原理。
在这里插入图片描述在这里插入图片描述在这里插入图片描述  图2所示就是SE block流程结构,给定一个输入x,其特征通道数为c_1,通过一系列卷积等一般变换后得到一个特征通道数为c_2的特征。与传统的CNN不一样的是,接下来论文通过三个操作来重标定前面得到的特征。
   首先是Squeeze操作,顺着空间维度来进行特征压缩,将每个二维的特征通道变成一个实数,这个实数某种程度上具有全局的感受野,并且输出的维度和输入的特征通道数相匹配。它表征着在特征通道上响应的全局分布,而且使得浅层也可以获得全局的感受野,这一点在很多任务中都是非常有用的。
其次是Excitation操作,它是一个类似于循环神经网络中门的机制。通过参数来为每个特征通道生成权重,其中参数被学习用来显式地建模特征通道间的相关性。
   最后是一个Reweight的操作,我们将Excitation的输出的权重看做是进过特征选择后的每个特征通道的重要性,然后通过乘法逐通道加权到先前的特征上,完成在通道维度上的对原始特征的重标定。

3. 附加

3.1 Excitation的作用
 论文比较有趣的地方在论文后面,作者对比不同类之间做了一些实验,阐述了Excitation在网络中不同层中的作用是不同的。
在这里插入图片描述论文对SENets中Excitation的作用提出以下三点看法:
  首先,不同类别的分布在较低层中几乎相同,例如,SE_2_3表明在网络的最初阶段特征通道的重要性很可能由不同的类别共享。
  当网络层数较深时,每个通道的值变得更具类别特定性,因为不同类别对特征的判别性值具有不同的偏好,例如,SE_4_6和SE_5_1这两个观察结果与以前的研究结果一致,即低层特征通常更普遍(即分类中不可知的类别),而高层特征具有更高的特异性。因此,表示特征学习从SE block的重新校准中受益,其自适应地促进特征提取和专业化。
(没看懂)最后,论文在网络的最后阶段观察到一个有些不同的现象,例如,SE_5_2呈现出朝向饱和状态的有趣趋势,其中大部分激活接近于1,其余激活接近于0,在所有激活值取1的点处,该块将成为标准残差块。
在网络的末端SE_5_3中(在分类器之前紧接着是全局池化),不同的类出现了尺度上只有轻微的变化的相似模式(可以通过分类器来调整)。这表明,SE_5_2和SE_5_3在为网络提供重新校准方面比前面的块更不重要,这一发现与第四节实证研究的结果是一致的。这表明,通过删除最后一个阶段的SE块,网络总体参数数量可以显著减少,而性能只有一点损失(<0.1%的top-1错误率)。

3.2附录的一些细节可以在以后应用中作为参考

转自https://blog.csdn.net/xjz18298268521/article/details/79078551

这篇关于ImageNet 2017夺冠架构SENetSENet的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/826795

相关文章

mybatis的整体架构

mybatis的整体架构分为三层: 1.基础支持层 该层包括:数据源模块、事务管理模块、缓存模块、Binding模块、反射模块、类型转换模块、日志模块、资源加载模块、解析器模块 2.核心处理层 该层包括:配置解析、参数映射、SQL解析、SQL执行、结果集映射、插件 3.接口层 该层包括:SqlSession 基础支持层 该层保护mybatis的基础模块,它们为核心处理层提供了良好的支撑。

百度/小米/滴滴/京东,中台架构比较

小米中台建设实践 01 小米的三大中台建设:业务+数据+技术 业务中台--从业务说起 在中台建设中,需要规范化的服务接口、一致整合化的数据、容器化的技术组件以及弹性的基础设施。并结合业务情况,判定是否真的需要中台。 小米参考了业界优秀的案例包括移动中台、数据中台、业务中台、技术中台等,再结合其业务发展历程及业务现状,整理了中台架构的核心方法论,一是企业如何共享服务,二是如何为业务提供便利。

系统架构设计师: 信息安全技术

简简单单 Online zuozuo: 简简单单 Online zuozuo 简简单单 Online zuozuo 简简单单 Online zuozuo 简简单单 Online zuozuo :本心、输入输出、结果 简简单单 Online zuozuo : 文章目录 系统架构设计师: 信息安全技术前言信息安全的基本要素:信息安全的范围:安全措施的目标:访问控制技术要素:访问控制包括:等保

利用命令模式构建高效的手游后端架构

在现代手游开发中,后端架构的设计对于支持高并发、快速迭代和复杂游戏逻辑至关重要。命令模式作为一种行为设计模式,可以有效地解耦请求的发起者与接收者,提升系统的可维护性和扩展性。本文将深入探讨如何利用命令模式构建一个强大且灵活的手游后端架构。 1. 命令模式的概念与优势 命令模式通过将请求封装为对象,使得请求的发起者和接收者之间的耦合度降低。这种模式的主要优势包括: 解耦请求发起者与处理者

创业者该如何设计公司的股权架构

本文来自七八点联合IT橘子和车库咖啡的一系列关于设计公司股权结构的讲座。 主讲人何德文: 在公司发展的不同阶段,创业者都会面临公司股权架构设计问题: 1.合伙人合伙创业第一天,就会面临股权架构设计问题(合伙人股权设计); 2.公司早期要引入天使资金,会面临股权架构设计问题(天使融资); 3.公司有三五十号人,要激励中层管理与重要技术人员和公司长期走下去,会面临股权架构设计问题(员工股权激

【系统架构设计师】黑板架构详解

黑板架构(Blackboard Architecture)是一种软件架构模式,它模仿了多个专家系统协作解决问题的场景。在这种架构中,“黑板”作为一个中央知识库,存储了问题的当前状态以及所有的解决方案和部分解决方案。黑板架构特别适合于解决那些没有确定算法、需要多个知识源(或称为“专家”)共同作用才能解决的复杂问题。 一、黑板架构的组成 黑板架构主要由以下几个部分组成: 黑板(Blackboa

Java后端微服务架构下的API限流策略:Guava RateLimiter

Java后端微服务架构下的API限流策略:Guava RateLimiter 大家好,我是微赚淘客返利系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿! 在微服务架构中,API限流是保护服务不受过度使用和拒绝服务攻击的重要手段。Guava RateLimiter是Google开源的Java库中的一个组件,提供了简单易用的限流功能。 API限流概述 API限流通过控制请求的速率来防止

Arch - 演进中的架构

文章目录 Pre原始分布式时代1. 背景与起源2. 分布式系统的初步探索3. 分布式计算环境(DCE)4. 技术挑战与困境5. 原始分布式时代的失败与教训6. 未来展望 单体时代优势缺陷单体架构与微服务架构的关系总结 SOA时代1. SOA架构及其背景1. 烟囱式架构(Information Silo Architecture)2. [微内核架构](https://www.oreilly.c

新一代车载(E/E)架构下的中央计算载体---HPC软件架构简介

老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 屏蔽力是信息过载时代一个人的特殊竞争力,任何消耗你的人和事,多看一眼都是你的不对。非必要不费力证明自己,无利益不试图说服别人,是精神上的节能减排。 无人问津也好,技不如人也罢,你都要试着安静下来,去做自己该做的事.而不是让内心的烦躁、焦虑、毁掉你本就不多的热情和定力。 时间不知不觉中,快要来到夏末秋初。一年又过去了一大半,成

Linux 云计算底层技术之一文读懂 Qemu 架构

Qemu 架构概览 Qemu 是纯软件实现的虚拟化模拟器,几乎可以模拟任何硬件设备,我们最熟悉的就是能够模拟一台能够独立运行操作系统的虚拟机,虚拟机认为自己和硬件打交道,但其实是和 Qemu 模拟出来的硬件打交道,Qemu 将这些指令转译给真正的硬件。 正因为 Qemu 是纯软件实现的,所有的指令都要经 Qemu 过一手,性能非常低,所以,在生产环境中,大多数的做法都是配合 KVM 来完成