Python分析无人驾驶汽车在桂林市文旅行业推广的问卷

本文主要是介绍Python分析无人驾驶汽车在桂林市文旅行业推广的问卷,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【项目背景】

通过市场调研、文本分析、访谈和问卷调查等方法,探讨:

  1. 网民对无人驾驶汽车出行服务的态度。
  2. 无人驾驶安全员的行业背景。
  3. 不同人群在旅游时的交通选择偏好。
  4. 游客及当地居民对桂林市文旅路线的交通满意度。
  5. 乘客对无人驾驶汽车的满意度。
  6. 桂林市文旅路线推广无人驾驶汽车是否会优化桂林旅游交通体验及其影响因素。

【相关代码】

import pandas as pd
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.decomposition import LatentDirichletAllocation as LDA
import matplotlib.pyplot as plt
from scipy.stats import chi2_contingency# 假设我们有一个包含问卷数据的CSV文件
data = pd.read_csv('survey_data.csv')# 数据清洗:移除缺失值
data_clean = data.dropna()# 文本分析:使用LDA模型提取主题
vectorizer = CountVectorizer(stop_words='english')
lda = LDA(n_components=3, random_state=0)
lda.fit_transform(vectorizer.fit_transform(data_clean['comments']))# 可视化主题
pyLDAvis.enable_notebook()
vis = pyLDAvis.gensim_models.prepare(lda, vectorizer, data_clean)
pyLDAvis.display(vis)# 交叉表和卡方检验:分析不同人群的交通选择偏好
contingency_table = pd.crosstab(data_clean['age_group'], data_clean['preferred_transport'])
chi2, p, dof, expected = chi2_contingency(contingency_table)print(f"Chi-squared test results: chi2={chi2}, p={p}, dof={dof}")# 满意度分析:计算不同交通方式的满意度
satisfaction_scores = data_clean[['waiting_time', 'vehicle_cleanliness', 'driver_attitude']].mean(axis=1)
print(f"Average satisfaction scores: {satisfaction_scores.mean()}")

【代码说明】

  • 数据导入与清洗:

使用Pandas库读取名为"survey_data.csv"的CSV文件,加载问卷数据。

对数据进行清洗,通过dropna()方法移除包含缺失值的行,存储在data_clean中。

  • 文本分析(LDA模型):

使用Scikit-learn库中的CountVectorizer进行文本向量化,将文本数据转换成词频矩阵。

使用Latent Dirichlet Allocation (LDA) 模型对文本数据进行主题提取。

通过LDA模型的fit_transform方法拟合并转换文本数据,将其应用到data_clean['comments']列中。

  • 可视化主题(pyLDAvis):

调用pyLDAvis.gensim_models.prepare方法准备可视化数据,用于展示LDA模型的结果。

最终通过pyLDAvis.display方法展示生成的交互式可视化主题图。

  • 交叉表和卡方检验:

使用Pandas的crosstab方法创建交叉表,分析不同人群(按照'age_group')的交通选择偏好('preferred_transport')。

通过chi2_contingency方法进行卡方检验,计算卡方值(chi2)、p值(p)、自由度(dof)和期望频数(expected)。

  • 满意度分析:

计算各个满意度指标(等待时间、车辆清洁度、司机态度)的平均分数。

将三个满意度指标的平均分数进行均值计算,作为整体满意度得分。

需要注意的是,代码中使用的一些库和函数如pyLDAvis、gensim_models需要提前导入或安装。整体代码结构为数据处理、文本分析、可视化、统计分析和结果展示。

civilpy:Python数据分析及可视化实例目录940 赞同 · 36 评论文章​编辑

civilpy:Python通过某上市企业经营业绩预测股价走势0 赞同 · 0 评论文章​编辑

civilpy:Python实时追踪关键点组成人体模型0 赞同 · 0 评论文章​编辑

这篇关于Python分析无人驾驶汽车在桂林市文旅行业推广的问卷的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/826374

相关文章

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核